Term Rewriting System R:
[x, y, z, l, l1, l2]
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
APP(cons(x, l1), l2) -> APP(l1, l2)
SUM(nil) -> 0'(#)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
SUM(app(l1, l2)) -> +'(sum(l1), sum(l2))
SUM(app(l1, l2)) -> SUM(l1)
SUM(app(l1, l2)) -> SUM(l2)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
PROD(app(l1, l2)) -> *'(prod(l1), prod(l2))
PROD(app(l1, l2)) -> PROD(l1)
PROD(app(l1, l2)) -> PROD(l2)
Furthermore, R contains five SCCs.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pairs:
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
Strategy:
innermost
As we are in the innermost case, we can delete all 13 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 6
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pairs:
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
Rules:
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
+(1(x), 0(y)) -> 1(+(x, y))
0(#) -> #
Strategy:
innermost
We have the following set of usable rules:
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
+(1(x), 0(y)) -> 1(+(x, y))
0(#) -> #
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(0(x1)) | = x1 |
POL(1(x1)) | = 1 + x1 |
POL(+(x1, x2)) | = x1 + x2 |
POL(+'(x1, x2)) | = 1 + x1 + x2 |
We have the following set D of usable symbols: {#, 0, 1, +, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 6
↳MRR
...
→DP Problem 7
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pairs:
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(0(x), 0(y)) -> +'(x, y)
Rules:
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
+(1(x), 0(y)) -> 1(+(x, y))
0(#) -> #
Strategy:
innermost
We have the following set of usable rules:
+(x, #) -> x
0(#) -> #
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
+(1(x), 0(y)) -> 1(+(x, y))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(0(x1)) | = 1 + x1 |
POL(1(x1)) | = x1 |
POL(+(x1, x2)) | = x1 + x2 |
POL(+'(x1, x2)) | = x1 + x2 |
We have the following set D of usable symbols: {#, 0, 1, +, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
+'(0(x), 0(y)) -> +'(x, y)
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
0(#) -> #
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 6
↳MRR
...
→DP Problem 8
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pairs:
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
Rules:
+(x, #) -> x
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
Strategy:
innermost
We have the following set of usable rules:
+(x, #) -> x
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(#) | = 0 |
POL(+(x1, x2)) | = x1 + x2 |
POL(+'(x1, x2)) | = 1 + x1 + x2 |
We have the following set D of usable symbols: {+, +'}
No Dependency Pairs can be deleted.
The following rules can be deleted as they contain symbols in their lhs which do not occur in D:
+(x, #) -> x
+(#, x) -> x
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 6
↳MRR
...
→DP Problem 9
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pairs:
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
Rule:
+(+(x, y), z) -> +(x, +(y, z))
Strategy:
innermost
We have the following set of usable rules:
+(+(x, y), z) -> +(x, +(y, z))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(+(x1, x2)) | = 1 + x1 + x2 |
POL(+'(x1, x2)) | = 1 + x1 + x2 |
We have the following set D of usable symbols: {+, +'}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
+'(+(x, y), z) -> +'(y, z)
No Rules can be deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 6
↳MRR
...
→DP Problem 10
↳Dependency Graph
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pair:
+'(+(x, y), z) -> +'(x, +(y, z))
Rule:
+(+(x, y), z) -> +(x, +(y, z))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pair:
APP(cons(x, l1), l2) -> APP(l1, l2)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
Strategy:
innermost
As we are in the innermost case, we can delete all 21 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pair:
APP(cons(x, l1), l2) -> APP(l1, l2)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- APP(cons(x, l1), l2) -> APP(l1, l2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pairs:
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
Strategy:
innermost
As we are in the innermost case, we can delete all 8 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 12
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
Dependency Pairs:
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
Rules:
*(1(x), y) -> +(0(*(x, y)), y)
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(*(x, y), z) -> *(x, *(y, z))
*(0(x), y) -> 0(*(x, y))
*(#, x) -> #
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(x, #) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(#, x) -> x
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #
Strategy:
innermost
We number the DPs as follows:
- *'(x, +(y, z)) -> *'(x, z)
- *'(*(x, y), z) -> *'(y, z)
- *'(x, +(y, z)) -> *'(x, y)
- *'(*(x, y), z) -> *'(x, *(y, z))
- *'(1(x), y) -> *'(x, y)
- *'(0(x), y) -> *'(x, y)
and get the following Size-Change Graph(s): |
{2, 5, 6} | , | {2, 5, 6} |
---|
1 | > | 1 |
2 | = | 2 |
|
|
|
which lead(s) to this/these maximal multigraph(s): {2, 5, 6} | , | {2, 5, 6} |
---|
1 | > | 1 |
2 | = | 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{2, 5, 6} | , | {2, 5, 6} |
---|
1 | > | 1 |
2 | > | 2 |
|
|
|
|
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
0(x1) -> 0(x1)
1(x1) -> 1(x1)
+(x1, x2) -> +(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
Dependency Pairs:
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
Strategy:
innermost
As we are in the innermost case, we can delete all 21 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 5
↳UsableRules
Dependency Pairs:
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- SUM(app(l1, l2)) -> SUM(l2)
- SUM(app(l1, l2)) -> SUM(l1)
- SUM(cons(x, l)) -> SUM(l)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
app(x1, x2) -> app(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
Dependency Pairs:
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
Rules:
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
Strategy:
innermost
As we are in the innermost case, we can delete all 21 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 14
↳Size-Change Principle
Dependency Pairs:
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- PROD(app(l1, l2)) -> PROD(l2)
- PROD(app(l1, l2)) -> PROD(l1)
- PROD(cons(x, l)) -> PROD(l)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
app(x1, x2) -> app(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:01 minutes