R
↳Dependency Pair Analysis
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
APP(cons(x, l1), l2) -> APP(l1, l2)
SUM(nil) -> 0'(#)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
SUM(app(l1, l2)) -> +'(sum(l1), sum(l2))
SUM(app(l1, l2)) -> SUM(l1)
SUM(app(l1, l2)) -> SUM(l2)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
PROD(app(l1, l2)) -> *'(prod(l1), prod(l2))
PROD(app(l1, l2)) -> PROD(l1)
PROD(app(l1, l2)) -> PROD(l2)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳Remaining
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
→DP Problem 5
↳Remaining
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
six new Dependency Pairs are created:
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y'), #) -> +'(x, y')
+'(+(x, 0(x'')), 0(y'')) -> +'(x, 0(+(x'', y'')))
+'(+(x, 0(x'')), 1(y'')) -> +'(x, 1(+(x'', y'')))
+'(+(x, 1(x'')), 0(y'')) -> +'(x, 1(+(x'', y'')))
+'(+(x, 1(x'')), 1(y'')) -> +'(x, 0(+(+(x'', y''), 1(#))))
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(y, z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
APP(cons(x, l1), l2) -> APP(l1, l2)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(y, z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
APP(cons(x, l1), l2) -> APP(l1, l2)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(y, z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
APP(cons(x, l1), l2) -> APP(l1, l2)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(y, z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
APP(cons(x, l1), l2) -> APP(l1, l2)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
→DP Problem 5
↳Remaining Obligation(s)
+'(+(x, +(x'', y'')), z'') -> +'(x, +(x'', +(y'', z'')))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(y, z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
APP(cons(x, l1), l2) -> APP(l1, l2)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
innermost