R
↳Dependency Pair Analysis
+'(s(x), s(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
*'(s(x), s(y)) -> +'(*(x, y), +(x, y))
*'(s(x), s(y)) -> *'(x, y)
*'(s(x), s(y)) -> +'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(s(x), s(y)) -> +'(x, y)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
+'(s(x), s(y)) -> +'(x, y)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
POL(0) = 1 POL(s(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳DGraph
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
+'(+(x, y), z) -> +'(y, z)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
+'(+(x, y), z) -> +'(y, z)
POL(+(x1, x2)) = 1 + x2 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳DGraph
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
*'(*(x, y), z) -> *'(y, z)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(s(x), s(y)) -> *'(x, y)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
three new Dependency Pairs are created:
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y'), 0) -> *'(x, 0)
*'(*(x, s(x'')), s(y'')) -> *'(x, s(+(*(x'', y''), +(x'', y''))))
*'(*(x, *(x'', y'')), z'') -> *'(x, *(x'', *(y'', z'')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
*'(*(x, *(x'', y'')), z'') -> *'(x, *(x'', *(y'', z'')))
*'(s(x), s(y)) -> *'(x, y)
*'(*(x, y), z) -> *'(y, z)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
three new Dependency Pairs are created:
*'(s(x), s(y)) -> *'(x, y)
*'(s(s(x'')), s(s(y''))) -> *'(s(x''), s(y''))
*'(s(*(x'', y'')), s(y0)) -> *'(*(x'', y''), y0)
*'(s(*(x'', *(x'''', y''''))), s(y')) -> *'(*(x'', *(x'''', y'''')), y')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 8
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Remaining
→DP Problem 4
↳Remaining
*'(s(*(x'', *(x'''', y''''))), s(y')) -> *'(*(x'', *(x'''', y'''')), y')
*'(*(x, y), z) -> *'(y, z)
*'(s(*(x'', y'')), s(y0)) -> *'(*(x'', y''), y0)
*'(s(s(x'')), s(s(y''))) -> *'(s(x''), s(y''))
*'(*(x, *(x'', y'')), z'') -> *'(x, *(x'', *(y'', z'')))
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
five new Dependency Pairs are created:
*'(*(x, y), z) -> *'(y, z)
*'(*(x, *(x'', y'')), z'') -> *'(*(x'', y''), z'')
*'(*(x, *(x'', *(x'''', y''''))), z') -> *'(*(x'', *(x'''', y'''')), z')
*'(*(x, s(s(x''''))), s(s(y''''))) -> *'(s(s(x'''')), s(s(y'''')))
*'(*(x, s(*(x'''', y''''))), s(y0'')) -> *'(s(*(x'''', y'''')), s(y0''))
*'(*(x, s(*(x'''', *(x'''''', y'''''')))), s(y''')) -> *'(s(*(x'''', *(x'''''', y''''''))), s(y'''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
*'(*(x, s(*(x'''', *(x'''''', y'''''')))), s(y''')) -> *'(s(*(x'''', *(x'''''', y''''''))), s(y'''))
*'(*(x, s(*(x'''', y''''))), s(y0'')) -> *'(s(*(x'''', y'''')), s(y0''))
*'(*(x, s(s(x''''))), s(s(y''''))) -> *'(s(s(x'''')), s(s(y'''')))
*'(*(x, *(x'', *(x'''', y''''))), z') -> *'(*(x'', *(x'''', y'''')), z')
*'(*(x, *(x'', y'')), z'') -> *'(*(x'', y''), z'')
*'(s(*(x'', y'')), s(y0)) -> *'(*(x'', y''), y0)
*'(s(s(x'')), s(s(y''))) -> *'(s(x''), s(y''))
*'(*(x, *(x'', y'')), z'') -> *'(x, *(x'', *(y'', z'')))
*'(s(*(x'', *(x'''', y''''))), s(y')) -> *'(*(x'', *(x'''', y'''')), y')
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
SUM(cons(x, l)) -> SUM(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
PROD(cons(x, l)) -> PROD(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
*'(*(x, s(*(x'''', *(x'''''', y'''''')))), s(y''')) -> *'(s(*(x'''', *(x'''''', y''''''))), s(y'''))
*'(*(x, s(*(x'''', y''''))), s(y0'')) -> *'(s(*(x'''', y'''')), s(y0''))
*'(*(x, s(s(x''''))), s(s(y''''))) -> *'(s(s(x'''')), s(s(y'''')))
*'(*(x, *(x'', *(x'''', y''''))), z') -> *'(*(x'', *(x'''', y'''')), z')
*'(*(x, *(x'', y'')), z'') -> *'(*(x'', y''), z'')
*'(s(*(x'', y'')), s(y0)) -> *'(*(x'', y''), y0)
*'(s(s(x'')), s(s(y''))) -> *'(s(x''), s(y''))
*'(*(x, *(x'', y'')), z'') -> *'(x, *(x'', *(y'', z'')))
*'(s(*(x'', *(x'''', y''''))), s(y')) -> *'(*(x'', *(x'''', y'''')), y')
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
SUM(cons(x, l)) -> SUM(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
PROD(cons(x, l)) -> PROD(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
→DP Problem 4
↳Remaining Obligation(s)
*'(*(x, s(*(x'''', *(x'''''', y'''''')))), s(y''')) -> *'(s(*(x'''', *(x'''''', y''''''))), s(y'''))
*'(*(x, s(*(x'''', y''''))), s(y0'')) -> *'(s(*(x'''', y'''')), s(y0''))
*'(*(x, s(s(x''''))), s(s(y''''))) -> *'(s(s(x'''')), s(s(y'''')))
*'(*(x, *(x'', *(x'''', y''''))), z') -> *'(*(x'', *(x'''', y'''')), z')
*'(*(x, *(x'', y'')), z'') -> *'(*(x'', y''), z'')
*'(s(*(x'', y'')), s(y0)) -> *'(*(x'', y''), y0)
*'(s(s(x'')), s(s(y''))) -> *'(s(x''), s(y''))
*'(*(x, *(x'', y'')), z'') -> *'(x, *(x'', *(y'', z'')))
*'(s(*(x'', *(x'''', y''''))), s(y')) -> *'(*(x'', *(x'''', y'''')), y')
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
SUM(cons(x, l)) -> SUM(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost
PROD(cons(x, l)) -> PROD(l)
+(x, 0) -> x
+(0, x) -> x
+(s(x), s(y)) -> s(s(+(x, y)))
+(+(x, y), z) -> +(x, +(y, z))
*(x, 0) -> 0
*(0, x) -> 0
*(s(x), s(y)) -> s(+(*(x, y), +(x, y)))
*(*(x, y), z) -> *(x, *(y, z))
sum(nil) -> 0
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> s(0)
prod(cons(x, l)) -> *(x, prod(l))
innermost