Term Rewriting System R:
[x, y, l, l1, l2, l3]
if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

EQ(s(x), s(y)) -> EQ(x, y)
APP(cons(x, l1), l2) -> APP(l1, l2)
APP(app(l1, l2), l3) -> APP(l1, app(l2, l3))
APP(app(l1, l2), l3) -> APP(l2, l3)
MEM(x, cons(y, l)) -> IFMEM(eq(x, y), x, l)
MEM(x, cons(y, l)) -> EQ(x, y)
IFMEM(false, x, l) -> MEM(x, l)
INTER(app(l1, l2), l3) -> APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) -> INTER(l1, l3)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(l1, app(l2, l3)) -> APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) -> MEM(x, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) -> MEM(x, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
IFINTER(false, x, l1, l2) -> INTER(l1, l2)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:

EQ(s(x), s(y)) -> EQ(x, y)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

EQ(s(x), s(y)) -> EQ(x, y)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(EQ(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 5
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pairs:

APP(app(l1, l2), l3) -> APP(l2, l3)
APP(cons(x, l1), l2) -> APP(l1, l2)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(app(l1, l2), l3) -> APP(l2, l3)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  x2  
  POL(APP(x1, x2))=  x1  
  POL(app(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 6
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:

APP(cons(x, l1), l2) -> APP(l1, l2)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(cons(x, l1), l2) -> APP(l1, l2)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x2  
  POL(APP(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 6
Polo
             ...
               →DP Problem 7
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo


Dependency Pairs:

IFMEM(false, x, l) -> MEM(x, l)
MEM(x, cons(y, l)) -> IFMEM(eq(x, y), x, l)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

MEM(x, cons(y, l)) -> IFMEM(eq(x, y), x, l)


Additionally, the following usable rules for innermost can be oriented:

eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MEM(x1, x2))=  x2  
  POL(eq(x1, x2))=  0  
  POL(0)=  0  
  POL(false)=  0  
  POL(cons(x1, x2))=  1 + x2  
  POL(IFMEM(x1, x2, x3))=  x3  
  POL(true)=  0  
  POL(s(x1))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 8
Dependency Graph
       →DP Problem 4
Polo


Dependency Pair:

IFMEM(false, x, l) -> MEM(x, l)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering


Dependency Pairs:

IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l1, l3)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pairs can be strictly oriented:

INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l1, l3)


Additionally, the following usable rules for innermost can be oriented:

mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mem(x1, x2))=  0  
  POL(eq(x1, x2))=  0  
  POL(0)=  0  
  POL(false)=  0  
  POL(cons(x1, x2))=  x2  
  POL(ifmem(x1, x2, x3))=  0  
  POL(nil)=  0  
  POL(true)=  0  
  POL(s(x1))=  0  
  POL(IFINTER(x1, x2, x3, x4))=  x3 + x4  
  POL(INTER(x1, x2))=  x1 + x2  
  POL(app(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 9
Polynomial Ordering


Dependency Pairs:

IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pairs can be strictly oriented:

INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)


Additionally, the following usable rules for innermost can be oriented:

mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(mem(x1, x2))=  0  
  POL(eq(x1, x2))=  0  
  POL(0)=  0  
  POL(false)=  0  
  POL(cons(x1, x2))=  1 + x2  
  POL(ifmem(x1, x2, x3))=  0  
  POL(nil)=  0  
  POL(true)=  0  
  POL(s(x1))=  0  
  POL(IFINTER(x1, x2, x3, x4))=  x3 + x4  
  POL(INTER(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 9
Polo
             ...
               →DP Problem 10
Dependency Graph


Dependency Pairs:

IFINTER(false, x, l1, l2) -> INTER(l1, l2)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:01 minutes