R
↳Dependency Pair Analysis
FOLDF(x, cons(y, z)) -> F(foldf(x, z), y)
FOLDF(x, cons(y, z)) -> FOLDF(x, z)
F(t, x) -> F'(t, g(x))
F(t, x) -> G(x)
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
F'(triple(a, b, c), A) -> F''(foldf(triple(cons(A, a), nil, c), b))
F'(triple(a, b, c), A) -> FOLDF(triple(cons(A, a), nil, c), b)
F''(triple(a, b, c)) -> FOLDF(triple(a, b, nil), c)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
F'(triple(a, b, c), A) -> FOLDF(triple(cons(A, a), nil, c), b)
FOLDF(x, cons(y, z)) -> FOLDF(x, z)
F''(triple(a, b, c)) -> FOLDF(triple(a, b, nil), c)
F'(triple(a, b, c), A) -> F''(foldf(triple(cons(A, a), nil, c), b))
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
F(t, x) -> F'(t, g(x))
FOLDF(x, cons(y, z)) -> F(foldf(x, z), y)
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
foldf(x, nil) -> x
foldf(x, cons(y, z)) -> f(foldf(x, z), y)
f(t, x) -> f'(t, g(x))
f'(triple(a, b, c), C) -> triple(a, b, cons(C, c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b))
f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c)
innermost
FOLDF(x, cons(y, z)) -> FOLDF(x, z)
FOLDF(x, cons(y, z)) -> F(foldf(x, z), y)
f'(triple(a, b, c), C) -> triple(a, b, cons(C, c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b))
foldf(x, nil) -> x
foldf(x, cons(y, z)) -> f(foldf(x, z), y)
f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c)
f(t, x) -> f'(t, g(x))
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
POL(triple(x1, x2, x3)) = x2 + x3 POL(f'(x1, x2)) = x1 + x2 POL(F(x1, x2)) = x1 POL(f(x1, x2)) = 1 + x1 POL(FOLDF(x1, x2)) = x1 + x2 POL(F''(x1)) = x1 POL(C) = 1 POL(B) = 1 POL(g(x1)) = 1 POL(cons(x1, x2)) = 1 + x2 POL(nil) = 0 POL(F'(x1, x2)) = x1 POL(foldf(x1, x2)) = x1 + x2 POL(f''(x1)) = x1 POL(A) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
F'(triple(a, b, c), A) -> FOLDF(triple(cons(A, a), nil, c), b)
F''(triple(a, b, c)) -> FOLDF(triple(a, b, nil), c)
F'(triple(a, b, c), A) -> F''(foldf(triple(cons(A, a), nil, c), b))
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
F(t, x) -> F'(t, g(x))
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
foldf(x, nil) -> x
foldf(x, cons(y, z)) -> f(foldf(x, z), y)
f(t, x) -> f'(t, g(x))
f'(triple(a, b, c), C) -> triple(a, b, cons(C, c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b))
f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Narrowing Transformation
F(t, x) -> F'(t, g(x))
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
foldf(x, nil) -> x
foldf(x, cons(y, z)) -> f(foldf(x, z), y)
f(t, x) -> f'(t, g(x))
f'(triple(a, b, c), C) -> triple(a, b, cons(C, c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b))
f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c)
innermost
six new Dependency Pairs are created:
F(t, x) -> F'(t, g(x))
F(t, A) -> F'(t, A)
F(t, B) -> F'(t, A)
F(t, B) -> F'(t, B)
F(t, C) -> F'(t, A)
F(t, C) -> F'(t, B)
F(t, C) -> F'(t, C)