Term Rewriting System R:
[x, y, z, l, l1, l2, l3]
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
-'(0(x), 0(y)) -> 0'(-(x, y))
-'(0(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(1(x), 1(y)) -> 0'(-(x, y))
-'(1(x), 1(y)) -> -'(x, y)
EQ(#, 0(y)) -> EQ(#, y)
EQ(0(x), #) -> EQ(x, #)
EQ(1(x), 1(y)) -> EQ(x, y)
EQ(0(x), 0(y)) -> EQ(x, y)
GE(0(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> NOT(ge(y, x))
GE(0(x), 1(y)) -> GE(y, x)
GE(1(x), 0(y)) -> GE(x, y)
GE(1(x), 1(y)) -> GE(x, y)
GE(#, 0(x)) -> GE(#, x)
LOG(x) -> -'(log'(x), 1(#))
LOG(x) -> LOG'(x)
LOG'(1(x)) -> +'(log'(x), 1(#))
LOG'(1(x)) -> LOG'(x)
LOG'(0(x)) -> IF(ge(x, 1(#)), +(log'(x), 1(#)), #)
LOG'(0(x)) -> GE(x, 1(#))
LOG'(0(x)) -> +'(log'(x), 1(#))
LOG'(0(x)) -> LOG'(x)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
APP(cons(x, l1), l2) -> APP(l1, l2)
SUM(nil) -> 0'(#)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
SUM(app(l1, l2)) -> +'(sum(l1), sum(l2))
SUM(app(l1, l2)) -> SUM(l1)
SUM(app(l1, l2)) -> SUM(l2)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
PROD(app(l1, l2)) -> *'(prod(l1), prod(l2))
PROD(app(l1, l2)) -> PROD(l1)
PROD(app(l1, l2)) -> PROD(l2)
MEM(x, cons(y, l)) -> IF(eq(x, y), true, mem(x, l))
MEM(x, cons(y, l)) -> EQ(x, y)
MEM(x, cons(y, l)) -> MEM(x, l)
INTER(app(l1, l2), l3) -> APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) -> INTER(l1, l3)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(l1, app(l2, l3)) -> APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) -> MEM(x, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) -> MEM(x, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
IFINTER(false, x, l1, l2) -> INTER(l1, l2)

Furthermore, R contains 14 SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pairs:

+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pairs can be strictly oriented:

+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)


The following usable rules for innermost can be oriented:

+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(0(x1))=  x1  
  POL(1(x1))=  1 + x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
1(x1) -> 1(x1)
0(x1) -> 0(x1)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 15
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pairs:

+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(0(x), 0(y)) -> +'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

+'(0(x), 0(y)) -> +'(x, y)


The following usable rules for innermost can be oriented:

+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(0(x1))=  1 + x1  
  POL(1(x1))=  1 + x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
0(x1) -> 0(x1)
+(x1, x2) -> +(x1, x2)
1(x1) -> 1(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 15
AFS
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pairs:

+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph the DP problem was split into 1 DP problems.


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 15
AFS
             ...
               →DP Problem 17
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:

+'(+(x, y), z) -> +'(y, z)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

+'(+(x, y), z) -> +'(y, z)


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(+(x1, x2))=  1 + x1 + x2  
  POL(+'(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 15
AFS
             ...
               →DP Problem 18
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pairs:

-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pairs can be strictly oriented:

-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)


The following usable rules for innermost can be oriented:

-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(-'(x1, x2))=  1 + x1 + x2  
  POL(0(x1))=  1 + x1  
  POL(1(x1))=  1 + x1  
  POL(-(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
-'(x1, x2) -> -'(x1, x2)
0(x1) -> 0(x1)
1(x1) -> 1(x1)
-(x1, x2) -> -(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 19
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:

EQ(#, 0(y)) -> EQ(#, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

EQ(#, 0(y)) -> EQ(#, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(EQ(x1, x2))=  x1 + x2  
  POL(0(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
EQ(x1, x2) -> EQ(x1, x2)
0(x1) -> 0(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 20
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:

EQ(0(x), #) -> EQ(x, #)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

EQ(0(x), #) -> EQ(x, #)


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(EQ(x1, x2))=  x1 + x2  
  POL(0(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
EQ(x1, x2) -> EQ(x1, x2)
0(x1) -> 0(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 21
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:

GE(#, 0(x)) -> GE(#, x)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

GE(#, 0(x)) -> GE(#, x)


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(0(x1))=  1 + x1  
  POL(GE(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
GE(x1, x2) -> GE(x1, x2)
0(x1) -> 0(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 22
Dependency Graph
       →DP Problem 6
AFS
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:

APP(cons(x, l1), l2) -> APP(l1, l2)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(cons(x, l1), l2) -> APP(l1, l2)


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(APP(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 23
Dependency Graph
       →DP Problem 7
Remaining
       →DP Problem 8
Remaining
       →DP Problem 9
Remaining
       →DP Problem 10
Remaining
       →DP Problem 11
Remaining
       →DP Problem 12
Remaining
       →DP Problem 13
Remaining
       →DP Problem 14
Remaining


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Remaining Obligation(s)
       →DP Problem 8
Remaining Obligation(s)
       →DP Problem 9
Remaining Obligation(s)
       →DP Problem 10
Remaining Obligation(s)
       →DP Problem 11
Remaining Obligation(s)
       →DP Problem 12
Remaining Obligation(s)
       →DP Problem 13
Remaining Obligation(s)
       →DP Problem 14
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:11 minutes