R
↳Dependency Pair Analysis
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
-'(0(x), 0(y)) -> 0'(-(x, y))
-'(0(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(1(x), 1(y)) -> 0'(-(x, y))
-'(1(x), 1(y)) -> -'(x, y)
EQ(#, 0(y)) -> EQ(#, y)
EQ(0(x), #) -> EQ(x, #)
EQ(1(x), 1(y)) -> EQ(x, y)
EQ(0(x), 0(y)) -> EQ(x, y)
GE(0(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> NOT(ge(y, x))
GE(0(x), 1(y)) -> GE(y, x)
GE(1(x), 0(y)) -> GE(x, y)
GE(1(x), 1(y)) -> GE(x, y)
GE(#, 0(x)) -> GE(#, x)
LOG(x) -> -'(log'(x), 1(#))
LOG(x) -> LOG'(x)
LOG'(1(x)) -> +'(log'(x), 1(#))
LOG'(1(x)) -> LOG'(x)
LOG'(0(x)) -> IF(ge(x, 1(#)), +(log'(x), 1(#)), #)
LOG'(0(x)) -> GE(x, 1(#))
LOG'(0(x)) -> +'(log'(x), 1(#))
LOG'(0(x)) -> LOG'(x)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
APP(cons(x, l1), l2) -> APP(l1, l2)
SUM(nil) -> 0'(#)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
SUM(app(l1, l2)) -> +'(sum(l1), sum(l2))
SUM(app(l1, l2)) -> SUM(l1)
SUM(app(l1, l2)) -> SUM(l2)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
PROD(app(l1, l2)) -> *'(prod(l1), prod(l2))
PROD(app(l1, l2)) -> PROD(l1)
PROD(app(l1, l2)) -> PROD(l2)
MEM(x, cons(y, l)) -> IF(eq(x, y), true, mem(x, l))
MEM(x, cons(y, l)) -> EQ(x, y)
MEM(x, cons(y, l)) -> MEM(x, l)
INTER(app(l1, l2), l3) -> APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) -> INTER(l1, l3)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(l1, app(l2, l3)) -> APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) -> MEM(x, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) -> MEM(x, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #
POL(#) = 0 POL(0(x1)) = x1 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
1(x1) -> 1(x1)
0(x1) -> 0(x1)
+(x1, x2) -> +(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 15
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
+'(0(x), 0(y)) -> +'(x, y)
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
0(#) -> #
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
0(x1) -> 0(x1)
+(x1, x2) -> +(x1, x2)
1(x1) -> 1(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 15
↳AFS
...
→DP Problem 16
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 15
↳AFS
...
→DP Problem 17
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
+'(+(x, y), z) -> +'(y, z)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
+'(+(x, y), z) -> +'(y, z)
POL(+(x1, x2)) = 1 + x1 + x2 POL(+'(x1, x2)) = x1 + x2
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 15
↳AFS
...
→DP Problem 18
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
-'(1(x), 1(y)) -> -'(x, y)
-'(1(x), 0(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(x, y)
-'(0(x), 1(y)) -> -'(-(x, y), 1(#))
-'(0(x), 0(y)) -> -'(x, y)
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
0(#) -> #
POL(#) = 0 POL(-'(x1, x2)) = 1 + x1 + x2 POL(0(x1)) = 1 + x1 POL(1(x1)) = 1 + x1 POL(-(x1, x2)) = x1 + x2
-'(x1, x2) -> -'(x1, x2)
0(x1) -> 0(x1)
1(x1) -> 1(x1)
-(x1, x2) -> -(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 19
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
EQ(#, 0(y)) -> EQ(#, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(#, 0(y)) -> EQ(#, y)
POL(#) = 0 POL(EQ(x1, x2)) = x1 + x2 POL(0(x1)) = 1 + x1
EQ(x1, x2) -> EQ(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 20
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
EQ(0(x), #) -> EQ(x, #)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), #) -> EQ(x, #)
POL(#) = 0 POL(EQ(x1, x2)) = x1 + x2 POL(0(x1)) = 1 + x1
EQ(x1, x2) -> EQ(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 21
↳Dependency Graph
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
GE(#, 0(x)) -> GE(#, x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(#, 0(x)) -> GE(#, x)
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(GE(x1, x2)) = x1 + x2
GE(x1, x2) -> GE(x1, x2)
0(x1) -> 0(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 22
↳Dependency Graph
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
APP(cons(x, l1), l2) -> APP(l1, l2)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
APP(cons(x, l1), l2) -> APP(l1, l2)
POL(cons(x1, x2)) = 1 + x1 + x2 POL(APP(x1, x2)) = x1 + x2
APP(x1, x2) -> APP(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 23
↳Dependency Graph
→DP Problem 7
↳Remaining
→DP Problem 8
↳Remaining
→DP Problem 9
↳Remaining
→DP Problem 10
↳Remaining
→DP Problem 11
↳Remaining
→DP Problem 12
↳Remaining
→DP Problem 13
↳Remaining
→DP Problem 14
↳Remaining
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Remaining Obligation(s)
→DP Problem 8
↳Remaining Obligation(s)
→DP Problem 9
↳Remaining Obligation(s)
→DP Problem 10
↳Remaining Obligation(s)
→DP Problem 11
↳Remaining Obligation(s)
→DP Problem 12
↳Remaining Obligation(s)
→DP Problem 13
↳Remaining Obligation(s)
→DP Problem 14
↳Remaining Obligation(s)
*'(x, +(y, z)) -> *'(x, z)
*'(*(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, y)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
SUM(app(l1, l2)) -> SUM(l2)
SUM(app(l1, l2)) -> SUM(l1)
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
EQ(0(x), 0(y)) -> EQ(x, y)
EQ(1(x), 1(y)) -> EQ(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
GE(1(x), 1(y)) -> GE(x, y)
GE(1(x), 0(y)) -> GE(x, y)
GE(0(x), 1(y)) -> GE(y, x)
GE(0(x), 0(y)) -> GE(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
PROD(app(l1, l2)) -> PROD(l2)
PROD(app(l1, l2)) -> PROD(l1)
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
MEM(x, cons(y, l)) -> MEM(x, l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
LOG'(0(x)) -> LOG'(x)
LOG'(1(x)) -> LOG'(x)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost
IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
+(+(x, y), z) -> +(x, +(y, z))
-(#, x) -> #
-(x, #) -> x
-(0(x), 0(y)) -> 0(-(x, y))
-(0(x), 1(y)) -> 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) -> 1(-(x, y))
-(1(x), 1(y)) -> 0(-(x, y))
not(true) -> false
not(false) -> true
if(true, x, y) -> x
if(false, x, y) -> y
eq(#, #) -> true
eq(#, 1(y)) -> false
eq(1(x), #) -> false
eq(#, 0(y)) -> eq(#, y)
eq(0(x), #) -> eq(x, #)
eq(1(x), 1(y)) -> eq(x, y)
eq(0(x), 1(y)) -> false
eq(1(x), 0(y)) -> false
eq(0(x), 0(y)) -> eq(x, y)
ge(0(x), 0(y)) -> ge(x, y)
ge(0(x), 1(y)) -> not(ge(y, x))
ge(1(x), 0(y)) -> ge(x, y)
ge(1(x), 1(y)) -> ge(x, y)
ge(x, #) -> true
ge(#, 0(x)) -> ge(#, x)
ge(#, 1(x)) -> false
log(x) -> -(log'(x), 1(#))
log'(#) -> #
log'(1(x)) -> +(log'(x), 1(#))
log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #)
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
*(*(x, y), z) -> *(x, *(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
sum(app(l1, l2)) -> +(sum(l1), sum(l2))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
prod(app(l1, l2)) -> *(prod(l1), prod(l2))
mem(x, nil) -> false
mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l))
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)
innermost