Term Rewriting System R:
[x, l, l1, l2]
isempty(nil) -> true
isempty(cons(x, l)) -> false
hd(cons(x, l)) -> x
tl(cons(x, l)) -> cons(x, l)
append(l1, l2) -> ifappend(l1, l2, isempty(l1))
ifappend(l1, l2, true) -> l2
ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APPEND(l1, l2) -> IFAPPEND(l1, l2, isempty(l1))
APPEND(l1, l2) -> ISEMPTY(l1)
IFAPPEND(l1, l2, false) -> HD(l1)
IFAPPEND(l1, l2, false) -> APPEND(tl(l1), l2)
IFAPPEND(l1, l2, false) -> TL(l1)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pairs:

IFAPPEND(l1, l2, false) -> APPEND(tl(l1), l2)
APPEND(l1, l2) -> IFAPPEND(l1, l2, isempty(l1))


Rules:


isempty(nil) -> true
isempty(cons(x, l)) -> false
hd(cons(x, l)) -> x
tl(cons(x, l)) -> cons(x, l)
append(l1, l2) -> ifappend(l1, l2, isempty(l1))
ifappend(l1, l2, true) -> l2
ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

APPEND(l1, l2) -> IFAPPEND(l1, l2, isempty(l1))
two new Dependency Pairs are created:

APPEND(nil, l2) -> IFAPPEND(nil, l2, true)
APPEND(cons(x', l'), l2) -> IFAPPEND(cons(x', l'), l2, false)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

APPEND(cons(x', l'), l2) -> IFAPPEND(cons(x', l'), l2, false)
IFAPPEND(l1, l2, false) -> APPEND(tl(l1), l2)


Rules:


isempty(nil) -> true
isempty(cons(x, l)) -> false
hd(cons(x, l)) -> x
tl(cons(x, l)) -> cons(x, l)
append(l1, l2) -> ifappend(l1, l2, isempty(l1))
ifappend(l1, l2, true) -> l2
ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFAPPEND(l1, l2, false) -> APPEND(tl(l1), l2)
one new Dependency Pair is created:

IFAPPEND(cons(x', l'), l2, false) -> APPEND(cons(x', l'), l2)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

IFAPPEND(cons(x', l'), l2, false) -> APPEND(cons(x', l'), l2)
APPEND(cons(x', l'), l2) -> IFAPPEND(cons(x', l'), l2, false)


Rules:


isempty(nil) -> true
isempty(cons(x, l)) -> false
hd(cons(x, l)) -> x
tl(cons(x, l)) -> cons(x, l)
append(l1, l2) -> ifappend(l1, l2, isempty(l1))
ifappend(l1, l2, true) -> l2
ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes