R
↳Dependency Pair Analysis
PLUS(s(s(x)), y) -> PLUS(x, s(y))
PLUS(x, s(s(y))) -> PLUS(s(x), y)
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), s(y)) -> PLUS(y, ack(s(x), y))
ACK(s(x), s(y)) -> ACK(s(x), y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
PLUS(x, s(s(y))) -> PLUS(s(x), y)
PLUS(s(s(x)), y) -> PLUS(x, s(y))
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
PLUS(x, s(s(y))) -> PLUS(s(x), y)
PLUS(s(s(x)), y) -> PLUS(x, s(y))
POL(PLUS(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), 0) -> ACK(x, s(0))
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), 0) -> ACK(x, s(0))
POL(s(x1)) = 1 + x1
ACK(x1, x2) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
ACK(s(x), s(y)) -> ACK(s(x), y)
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
ACK(s(x), s(y)) -> ACK(s(x), y)
POL(ACK(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
ACK(x1, x2) -> ACK(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳AFS
...
→DP Problem 5
↳Dependency Graph
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost