R
↳Dependency Pair Analysis
PLUS(s(s(x)), y) -> PLUS(x, s(y))
PLUS(x, s(s(y))) -> PLUS(s(x), y)
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), s(y)) -> PLUS(y, ack(s(x), y))
ACK(s(x), s(y)) -> ACK(s(x), y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
PLUS(x, s(s(y))) -> PLUS(s(x), y)
PLUS(s(s(x)), y) -> PLUS(x, s(y))
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
PLUS(x, s(s(y))) -> PLUS(s(x), y)
PLUS(s(s(x)), y) -> PLUS(x, s(y))
POL(PLUS(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), 0) -> ACK(x, s(0))
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
five new Dependency Pairs are created:
ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y)))
ACK(s(x0), s(s(s(x'')))) -> ACK(x0, s(plus(x'', s(ack(s(x0), s(s(x'')))))))
ACK(s(x'), s(s(0))) -> ACK(x', s(ack(s(x'), s(0))))
ACK(s(x'), s(0)) -> ACK(x', ack(s(x'), 0))
ACK(s(x''), s(0)) -> ACK(x'', plus(0, ack(x'', s(0))))
ACK(s(x''), s(s(y''))) -> ACK(x'', plus(s(y''), ack(x'', plus(y'', ack(s(x''), y'')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳Forward Instantiation Transformation
ACK(s(x''), s(s(y''))) -> ACK(x'', plus(s(y''), ack(x'', plus(y'', ack(s(x''), y'')))))
ACK(s(x''), s(0)) -> ACK(x'', plus(0, ack(x'', s(0))))
ACK(s(x'), s(s(0))) -> ACK(x', s(ack(s(x'), s(0))))
ACK(s(x0), s(s(s(x'')))) -> ACK(x0, s(plus(x'', s(ack(s(x0), s(s(x'')))))))
ACK(s(x'), s(0)) -> ACK(x', ack(s(x'), 0))
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(x), s(y)) -> ACK(s(x), y)
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
three new Dependency Pairs are created:
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(s(x'')), 0) -> ACK(s(x''), s(0))
ACK(s(s(x''')), 0) -> ACK(s(x'''), s(0))
ACK(s(s(x'''')), 0) -> ACK(s(x''''), s(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
ACK(s(s(x'''')), 0) -> ACK(s(x''''), s(0))
ACK(s(s(x''')), 0) -> ACK(s(x'''), s(0))
ACK(s(s(x'')), 0) -> ACK(s(x''), s(0))
ACK(s(x''), s(0)) -> ACK(x'', plus(0, ack(x'', s(0))))
ACK(s(x'), s(0)) -> ACK(x', ack(s(x'), 0))
ACK(s(x'), s(s(0))) -> ACK(x', s(ack(s(x'), s(0))))
ACK(s(x0), s(s(s(x'')))) -> ACK(x0, s(plus(x'', s(ack(s(x0), s(s(x'')))))))
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x''), s(s(y''))) -> ACK(x'', plus(s(y''), ack(x'', plus(y'', ack(s(x''), y'')))))
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost
eight new Dependency Pairs are created:
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x''), s(s(y''))) -> ACK(s(x''), s(y''))
ACK(s(x'), s(s(s(s(x''''))))) -> ACK(s(x'), s(s(s(x''''))))
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ACK(s(x'), s(s(0))) -> ACK(s(x'), s(0))
ACK(s(x'), s(s(s(y'''')))) -> ACK(s(x'), s(s(y'''')))
ACK(s(s(x'''')), s(0)) -> ACK(s(s(x'''')), 0)
ACK(s(s(x''''')), s(0)) -> ACK(s(s(x''''')), 0)
ACK(s(s(x'''''')), s(0)) -> ACK(s(s(x'''''')), 0)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Remaining Obligation(s)
ACK(s(x'), s(s(s(y'''')))) -> ACK(s(x'), s(s(y'''')))
ACK(s(x'), s(s(0))) -> ACK(s(x'), s(0))
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ACK(s(x'), s(s(s(s(x''''))))) -> ACK(s(x'), s(s(s(x''''))))
ACK(s(x''), s(s(y''))) -> ACK(s(x''), s(y''))
ACK(s(s(x'''''')), s(0)) -> ACK(s(s(x'''''')), 0)
ACK(s(s(x''''')), s(0)) -> ACK(s(s(x''''')), 0)
ACK(s(s(x''')), 0) -> ACK(s(x'''), s(0))
ACK(s(s(x'''')), s(0)) -> ACK(s(s(x'''')), 0)
ACK(s(s(x'')), 0) -> ACK(s(x''), s(0))
ACK(s(x''), s(s(y''))) -> ACK(x'', plus(s(y''), ack(x'', plus(y'', ack(s(x''), y'')))))
ACK(s(x''), s(0)) -> ACK(x'', plus(0, ack(x'', s(0))))
ACK(s(x'), s(s(0))) -> ACK(x', s(ack(s(x'), s(0))))
ACK(s(x0), s(s(s(x'')))) -> ACK(x0, s(plus(x'', s(ack(s(x0), s(s(x'')))))))
ACK(s(x'), s(0)) -> ACK(x', ack(s(x'), 0))
ACK(s(s(x'''')), 0) -> ACK(s(x''''), s(0))
plus(s(s(x)), y) -> s(plus(x, s(y)))
plus(x, s(s(y))) -> s(plus(s(x), y))
plus(s(0), y) -> s(y)
plus(0, y) -> y
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y)))
innermost