R
↳Dependency Pair Analysis
PLUS(x, s(y)) -> PLUS(x, y)
TIMES(s(x), y) -> PLUS(times(x, y), y)
TIMES(s(x), y) -> TIMES(x, y)
P(s(s(x))) -> P(s(x))
FAC(s(x)) -> TIMES(fac(p(s(x))), s(x))
FAC(s(x)) -> FAC(p(s(x)))
FAC(s(x)) -> P(s(x))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
PLUS(x, s(y)) -> PLUS(x, y)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
innermost
PLUS(x, s(y)) -> PLUS(x, y)
trivial
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
P(s(s(x))) -> P(s(x))
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
innermost
P(s(s(x))) -> P(s(x))
trivial
P(x1) -> P(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳Remaining
TIMES(s(x), y) -> TIMES(x, y)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
innermost
TIMES(s(x), y) -> TIMES(x, y)
trivial
TIMES(x1, x2) -> TIMES(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳Remaining
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining Obligation(s)
FAC(s(x)) -> FAC(p(s(x)))
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
innermost