R
↳Dependency Pair Analysis
ACTIVE(f(x)) -> F(f(x))
CHK(no(f(x))) -> F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
CHK(no(f(x))) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
CHK(no(f(x))) -> MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)
CHK(no(f(x))) -> F(f(f(f(f(f(f(f(f(f(X))))))))))
CHK(no(f(x))) -> F(f(f(f(f(f(f(f(f(X)))))))))
CHK(no(f(x))) -> F(f(f(f(f(f(f(f(X))))))))
CHK(no(f(x))) -> F(f(f(f(f(f(f(X)))))))
CHK(no(f(x))) -> F(f(f(f(f(f(X))))))
CHK(no(f(x))) -> F(f(f(f(f(X)))))
CHK(no(f(x))) -> F(f(f(f(X))))
CHK(no(f(x))) -> F(f(f(X)))
CHK(no(f(x))) -> F(f(X))
CHK(no(f(x))) -> F(X)
CHK(no(c)) -> ACTIVE(c)
MAT(f(x), f(y)) -> F(mat(x, y))
MAT(f(x), f(y)) -> MAT(x, y)
F(active(x)) -> ACTIVE(f(x))
F(active(x)) -> F(x)
F(no(x)) -> F(x)
F(mark(x)) -> F(x)
TP(mark(x)) -> TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
TP(mark(x)) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
TP(mark(x)) -> MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)
TP(mark(x)) -> F(f(f(f(f(f(f(f(f(f(X))))))))))
TP(mark(x)) -> F(f(f(f(f(f(f(f(f(X)))))))))
TP(mark(x)) -> F(f(f(f(f(f(f(f(X))))))))
TP(mark(x)) -> F(f(f(f(f(f(f(X)))))))
TP(mark(x)) -> F(f(f(f(f(f(X))))))
TP(mark(x)) -> F(f(f(f(f(X)))))
TP(mark(x)) -> F(f(f(f(X))))
TP(mark(x)) -> F(f(f(X)))
TP(mark(x)) -> F(f(X))
TP(mark(x)) -> F(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining
F(mark(x)) -> F(x)
F(no(x)) -> F(x)
F(active(x)) -> F(x)
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
F(mark(x)) -> F(x)
POL(active(x1)) = x1 POL(no(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining
F(no(x)) -> F(x)
F(active(x)) -> F(x)
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
F(no(x)) -> F(x)
POL(active(x1)) = x1 POL(no(x1)) = 1 + x1 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Polo
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining
F(active(x)) -> F(x)
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
F(active(x)) -> F(x)
POL(active(x1)) = 1 + x1 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Polo
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Remaining
CHK(no(f(x))) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
CHK(no(f(x))) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
active(f(x)) -> mark(f(f(x)))
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
POL(active(x1)) = 0 POL(c) = 0 POL(X) = 0 POL(no(x1)) = x1 POL(mark(x1)) = 0 POL(y) = 1 POL(f(x1)) = 1 + x1 POL(CHK(x1)) = 1 + x1 POL(mat(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳Remaining
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Remaining Obligation(s)
TP(mark(x)) -> TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost