R
↳Dependency Pair Analysis
ACTIVE(f(x)) -> F(f(x))
CHK(no(f(x))) -> F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
CHK(no(f(x))) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
CHK(no(f(x))) -> MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)
CHK(no(f(x))) -> F(f(f(f(f(f(f(f(f(f(X))))))))))
CHK(no(f(x))) -> F(f(f(f(f(f(f(f(f(X)))))))))
CHK(no(f(x))) -> F(f(f(f(f(f(f(f(X))))))))
CHK(no(f(x))) -> F(f(f(f(f(f(f(X)))))))
CHK(no(f(x))) -> F(f(f(f(f(f(X))))))
CHK(no(f(x))) -> F(f(f(f(f(X)))))
CHK(no(f(x))) -> F(f(f(f(X))))
CHK(no(f(x))) -> F(f(f(X)))
CHK(no(f(x))) -> F(f(X))
CHK(no(f(x))) -> F(X)
CHK(no(c)) -> ACTIVE(c)
MAT(f(x), f(y)) -> F(mat(x, y))
MAT(f(x), f(y)) -> MAT(x, y)
F(active(x)) -> ACTIVE(f(x))
F(active(x)) -> F(x)
F(no(x)) -> F(x)
F(mark(x)) -> F(x)
TP(mark(x)) -> TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
TP(mark(x)) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
TP(mark(x)) -> MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)
TP(mark(x)) -> F(f(f(f(f(f(f(f(f(f(X))))))))))
TP(mark(x)) -> F(f(f(f(f(f(f(f(f(X)))))))))
TP(mark(x)) -> F(f(f(f(f(f(f(f(X))))))))
TP(mark(x)) -> F(f(f(f(f(f(f(X)))))))
TP(mark(x)) -> F(f(f(f(f(f(X))))))
TP(mark(x)) -> F(f(f(f(f(X)))))
TP(mark(x)) -> F(f(f(f(X))))
TP(mark(x)) -> F(f(f(X)))
TP(mark(x)) -> F(f(X))
TP(mark(x)) -> F(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(mark(x)) -> F(x)
F(no(x)) -> F(x)
F(active(x)) -> F(x)
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
three new Dependency Pairs are created:
F(active(x)) -> F(x)
F(active(active(x''))) -> F(active(x''))
F(active(no(x''))) -> F(no(x''))
F(active(mark(x''))) -> F(mark(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(active(mark(x''))) -> F(mark(x''))
F(active(no(x''))) -> F(no(x''))
F(active(active(x''))) -> F(active(x''))
F(no(x)) -> F(x)
F(mark(x)) -> F(x)
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
five new Dependency Pairs are created:
F(no(x)) -> F(x)
F(no(no(x''))) -> F(no(x''))
F(no(mark(x''))) -> F(mark(x''))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(no(mark(x''))) -> F(mark(x''))
F(no(no(x''))) -> F(no(x''))
F(active(no(x''))) -> F(no(x''))
F(active(active(x''))) -> F(active(x''))
F(mark(x)) -> F(x)
F(active(mark(x''))) -> F(mark(x''))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
nine new Dependency Pairs are created:
F(mark(x)) -> F(x)
F(mark(mark(x''))) -> F(mark(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(no(mark(x''))) -> F(mark(x''))
F(no(no(x''))) -> F(no(x''))
F(active(no(x''))) -> F(no(x''))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(x''))) -> F(mark(x''))
F(active(mark(x''))) -> F(mark(x''))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
five new Dependency Pairs are created:
F(active(no(x''))) -> F(no(x''))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(no(mark(x''))) -> F(mark(x''))
F(no(no(x''))) -> F(no(x''))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(x''))) -> F(mark(x''))
F(active(mark(x''))) -> F(mark(x''))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
nine new Dependency Pairs are created:
F(active(mark(x''))) -> F(mark(x''))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(x''))) -> F(mark(x''))
F(no(mark(x''))) -> F(mark(x''))
F(no(no(x''))) -> F(no(x''))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
five new Dependency Pairs are created:
F(no(no(x''))) -> F(no(x''))
F(no(no(no(x'''')))) -> F(no(no(x'''')))
F(no(no(mark(x'''')))) -> F(no(mark(x'''')))
F(no(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(no(mark(x''))) -> F(mark(x''))
F(no(no(mark(x'''')))) -> F(no(mark(x'''')))
F(no(no(no(x'''')))) -> F(no(no(x'''')))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(x''))) -> F(mark(x''))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
nine new Dependency Pairs are created:
F(no(mark(x''))) -> F(mark(x''))
F(no(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(no(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(no(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(no(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(no(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(no(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(no(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(no(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(no(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(no(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(no(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(no(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(no(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(no(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(no(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(no(mark(x'''')))) -> F(no(mark(x'''')))
F(no(no(no(x'''')))) -> F(no(no(x'''')))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(x''))) -> F(mark(x''))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
nine new Dependency Pairs are created:
F(mark(mark(x''))) -> F(mark(x''))
F(mark(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(mark(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(mark(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(mark(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(mark(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(mark(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(mark(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(no(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(no(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(no(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(mark(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(no(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(no(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(no(mark(x'''')))) -> F(no(mark(x'''')))
F(no(no(no(x'''')))) -> F(no(no(x'''')))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
five new Dependency Pairs are created:
F(mark(no(no(x'''')))) -> F(no(no(x'''')))
F(mark(no(no(no(x''''''))))) -> F(no(no(no(x''''''))))
F(mark(no(no(mark(x''''''))))) -> F(no(no(mark(x''''''))))
F(mark(no(no(active(active(x'''''''')))))) -> F(no(no(active(active(x'''''''')))))
F(mark(no(no(active(no(x'''''''')))))) -> F(no(no(active(no(x'''''''')))))
F(mark(no(no(active(mark(x'''''''')))))) -> F(no(no(active(mark(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(mark(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(mark(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(no(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(no(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(mark(no(no(active(mark(x'''''''')))))) -> F(no(no(active(mark(x'''''''')))))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(no(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(mark(no(no(active(no(x'''''''')))))) -> F(no(no(active(no(x'''''''')))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(no(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(no(active(active(x'''''''')))))) -> F(no(no(active(active(x'''''''')))))
F(mark(no(no(mark(x''''''))))) -> F(no(no(mark(x''''''))))
F(mark(no(no(no(x''''''))))) -> F(no(no(no(x''''''))))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(no(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(no(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(no(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(mark(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(no(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(no(mark(x'''')))) -> F(no(mark(x'''')))
F(no(no(no(x'''')))) -> F(no(no(x'''')))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(mark(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
nine new Dependency Pairs are created:
F(mark(no(mark(x'''')))) -> F(no(mark(x'''')))
F(mark(no(mark(mark(x''''''))))) -> F(no(mark(mark(x''''''))))
F(mark(no(mark(active(active(x'''''''')))))) -> F(no(mark(active(active(x'''''''')))))
F(mark(no(mark(active(no(x'''''''')))))) -> F(no(mark(active(no(x'''''''')))))
F(mark(no(mark(active(mark(x'''''''')))))) -> F(no(mark(active(mark(x'''''''')))))
F(mark(no(mark(no(no(x'''''''')))))) -> F(no(mark(no(no(x'''''''')))))
F(mark(no(mark(no(mark(x'''''''')))))) -> F(no(mark(no(mark(x'''''''')))))
F(mark(no(mark(no(active(active(x''''''''''))))))) -> F(no(mark(no(active(active(x''''''''''))))))
F(mark(no(mark(no(active(no(x''''''''''))))))) -> F(no(mark(no(active(no(x''''''''''))))))
F(mark(no(mark(no(active(mark(x''''''''''))))))) -> F(no(mark(no(active(mark(x''''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 13
↳Polynomial Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(mark(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(mark(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(mark(no(mark(no(active(mark(x''''''''''))))))) -> F(no(mark(no(active(mark(x''''''''''))))))
F(no(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(mark(no(mark(no(active(no(x''''''''''))))))) -> F(no(mark(no(active(no(x''''''''''))))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(no(mark(no(active(active(x''''''''''))))))) -> F(no(mark(no(active(active(x''''''''''))))))
F(no(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(no(mark(no(mark(x'''''''')))))) -> F(no(mark(no(mark(x'''''''')))))
F(no(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(mark(no(mark(no(no(x'''''''')))))) -> F(no(mark(no(no(x'''''''')))))
F(no(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(mark(no(mark(active(mark(x'''''''')))))) -> F(no(mark(active(mark(x'''''''')))))
F(mark(no(mark(active(no(x'''''''')))))) -> F(no(mark(active(no(x'''''''')))))
F(mark(no(mark(active(active(x'''''''')))))) -> F(no(mark(active(active(x'''''''')))))
F(mark(no(mark(mark(x''''''))))) -> F(no(mark(mark(x''''''))))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(mark(no(no(active(mark(x'''''''')))))) -> F(no(no(active(mark(x'''''''')))))
F(no(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(mark(no(no(active(no(x'''''''')))))) -> F(no(no(active(no(x'''''''')))))
F(no(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(no(active(active(x'''''''')))))) -> F(no(no(active(active(x'''''''')))))
F(mark(no(no(mark(x''''''))))) -> F(no(no(mark(x''''''))))
F(mark(no(no(no(x''''''))))) -> F(no(no(no(x''''''))))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(mark(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(no(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(no(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(no(mark(x'''')))) -> F(no(mark(x'''')))
F(no(no(no(x'''')))) -> F(no(no(x'''')))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(mark(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
F(mark(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(mark(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(active(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(active(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(mark(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(mark(no(mark(no(active(mark(x''''''''''))))))) -> F(no(mark(no(active(mark(x''''''''''))))))
F(mark(no(mark(no(active(no(x''''''''''))))))) -> F(no(mark(no(active(no(x''''''''''))))))
F(mark(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(no(mark(no(active(active(x''''''''''))))))) -> F(no(mark(no(active(active(x''''''''''))))))
F(mark(no(mark(no(mark(x'''''''')))))) -> F(no(mark(no(mark(x'''''''')))))
F(mark(no(mark(no(no(x'''''''')))))) -> F(no(mark(no(no(x'''''''')))))
F(mark(no(mark(active(mark(x'''''''')))))) -> F(no(mark(active(mark(x'''''''')))))
F(mark(no(mark(active(no(x'''''''')))))) -> F(no(mark(active(no(x'''''''')))))
F(mark(no(mark(active(active(x'''''''')))))) -> F(no(mark(active(active(x'''''''')))))
F(mark(no(mark(mark(x''''''))))) -> F(no(mark(mark(x''''''))))
F(active(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(mark(no(no(active(mark(x'''''''')))))) -> F(no(no(active(mark(x'''''''')))))
F(mark(no(no(active(no(x'''''''')))))) -> F(no(no(active(no(x'''''''')))))
F(mark(no(no(active(active(x'''''''')))))) -> F(no(no(active(active(x'''''''')))))
F(mark(no(no(mark(x''''''))))) -> F(no(no(mark(x''''''))))
F(mark(no(no(no(x''''''))))) -> F(no(no(no(x''''''))))
F(active(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(active(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(active(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(active(mark(x'''')))) -> F(active(mark(x'''')))
F(mark(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(mark(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(active(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(active(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(active(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(active(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(mark(active(no(x'''')))) -> F(active(no(x'''')))
F(active(no(mark(x'''')))) -> F(no(mark(x'''')))
F(active(active(x''))) -> F(active(x''))
F(mark(active(active(x'''')))) -> F(active(active(x'''')))
F(mark(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(mark(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(active(no(no(x'''')))) -> F(no(no(x'''')))
F(mark(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(mark(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
active(f(x)) -> mark(f(f(x)))
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
POL(active(x1)) = 1 + x1 POL(no(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(f(x1)) = x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 14
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(no(mark(no(active(mark(x'''''''')))))) -> F(mark(no(active(mark(x'''''''')))))
F(no(mark(no(active(no(x'''''''')))))) -> F(mark(no(active(no(x'''''''')))))
F(no(mark(no(active(active(x'''''''')))))) -> F(mark(no(active(active(x'''''''')))))
F(no(mark(no(mark(x''''''))))) -> F(mark(no(mark(x''''''))))
F(no(mark(no(no(x''''''))))) -> F(mark(no(no(x''''''))))
F(no(mark(active(mark(x''''''))))) -> F(mark(active(mark(x''''''))))
F(no(no(active(mark(x''''''))))) -> F(no(active(mark(x''''''))))
F(no(no(active(no(x''''''))))) -> F(no(active(no(x''''''))))
F(no(no(active(active(x''''''))))) -> F(no(active(active(x''''''))))
F(no(active(mark(x'''')))) -> F(active(mark(x'''')))
F(no(active(active(x'''')))) -> F(active(active(x'''')))
F(no(mark(active(no(x''''''))))) -> F(mark(active(no(x''''''))))
F(no(mark(active(active(x''''''))))) -> F(mark(active(active(x''''''))))
F(no(mark(mark(x'''')))) -> F(mark(mark(x'''')))
F(no(no(mark(x'''')))) -> F(no(mark(x'''')))
F(no(no(no(x'''')))) -> F(no(no(x'''')))
F(no(active(no(x'''')))) -> F(active(no(x'''')))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 15
↳Polynomial Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
F(no(no(no(x'''')))) -> F(no(no(x'''')))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
F(no(no(no(x'''')))) -> F(no(no(x'''')))
POL(no(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 16
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳Nar
CHK(no(f(x))) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
two new Dependency Pairs are created:
CHK(no(f(x))) -> CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x))
CHK(no(f(f(y)))) -> CHK(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))
CHK(no(f(c))) -> CHK(no(c))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 17
↳Narrowing Transformation
→DP Problem 3
↳Nar
CHK(no(f(f(y)))) -> CHK(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
no new Dependency Pairs are created.
CHK(no(f(f(y)))) -> CHK(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Narrowing Transformation
TP(mark(x)) -> TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
two new Dependency Pairs are created:
TP(mark(x)) -> TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
TP(mark(f(y))) -> TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y))))
TP(mark(c)) -> TP(chk(no(c)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 18
↳Narrowing Transformation
TP(mark(c)) -> TP(chk(no(c)))
TP(mark(f(y))) -> TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y))))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
no new Dependency Pairs are created.
TP(mark(f(y))) -> TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 19
↳Narrowing Transformation
TP(mark(c)) -> TP(chk(no(c)))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
one new Dependency Pair is created:
TP(mark(c)) -> TP(chk(no(c)))
TP(mark(c)) -> TP(active(c))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 20
↳Narrowing Transformation
TP(mark(c)) -> TP(active(c))
active(f(x)) -> mark(f(f(x)))
chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
chk(no(c)) -> active(c)
mat(f(x), f(y)) -> f(mat(x, y))
mat(f(x), c) -> no(c)
f(active(x)) -> active(f(x))
f(no(x)) -> no(f(x))
f(mark(x)) -> mark(f(x))
tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
innermost
no new Dependency Pairs are created.
TP(mark(c)) -> TP(active(c))