R
↳Dependency Pair Analysis
ACTIVE(f(x)) -> F(active(x))
ACTIVE(f(x)) -> ACTIVE(x)
TOP(active(c)) -> TOP(mark(c))
TOP(mark(x)) -> TOP(check(x))
TOP(mark(x)) -> CHECK(x)
TOP(found(x)) -> TOP(active(x))
TOP(found(x)) -> ACTIVE(x)
CHECK(f(x)) -> F(check(x))
CHECK(f(x)) -> CHECK(x)
CHECK(x) -> START(match(f(X), x))
CHECK(x) -> MATCH(f(X), x)
CHECK(x) -> F(X)
MATCH(f(x), f(y)) -> F(match(x, y))
MATCH(f(x), f(y)) -> MATCH(x, y)
MATCH(X, x) -> PROPER(x)
PROPER(f(x)) -> F(proper(x))
PROPER(f(x)) -> PROPER(x)
F(ok(x)) -> F(x)
F(found(x)) -> F(x)
F(mark(x)) -> F(x)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
F(mark(x)) -> F(x)
F(found(x)) -> F(x)
F(ok(x)) -> F(x)
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 7
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
F(mark(x)) -> F(x)
F(found(x)) -> F(x)
F(ok(x)) -> F(x)
none
innermost
|
|
trivial
found(x1) -> found(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
ACTIVE(f(x)) -> ACTIVE(x)
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 8
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
ACTIVE(f(x)) -> ACTIVE(x)
none
innermost
|
|
trivial
f(x1) -> f(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
PROPER(f(x)) -> PROPER(x)
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
PROPER(f(x)) -> PROPER(x)
none
innermost
|
|
trivial
f(x1) -> f(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
MATCH(f(x), f(y)) -> MATCH(x, y)
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
MATCH(f(x), f(y)) -> MATCH(x, y)
none
innermost
|
|
trivial
f(x1) -> f(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
CHECK(f(x)) -> CHECK(x)
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 6
↳UsableRules
CHECK(f(x)) -> CHECK(x)
none
innermost
|
|
trivial
f(x1) -> f(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
TOP(active(c)) -> TOP(mark(c))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 12
↳Negative Polynomial Order
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
TOP(active(c)) -> TOP(mark(c))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
match(f(x), f(y)) -> f(match(x, y))
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
innermost
TOP(active(c)) -> TOP(mark(c))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
match(f(x), f(y)) -> f(match(x, y))
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
POL( TOP(x1) ) = x1
POL( active(x1) ) = x1
POL( c ) = 1
POL( mark(x1) ) = 0
POL( found(x1) ) = x1
POL( check(x1) ) = 0
POL( f(x1) ) = 0
POL( ok(x1) ) = x1
POL( match(x1, x2) ) = x1
POL( X ) = 1
POL( proper(x1) ) = 1
POL( start(x1) ) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 12
↳Neg POLO
...
→DP Problem 13
↳Modular Removal of Rules
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
match(f(x), f(y)) -> f(match(x, y))
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(found(x)) -> found(f(x))
active(f(x)) -> mark(x)
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
start(ok(x)) -> found(x)
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
match(f(x), f(y)) -> f(match(x, y))
POL(active(x1)) = x1 POL(proper(x1)) = x1 POL(c) = 0 POL(match(x1, x2)) = x1 + x2 POL(X) = 0 POL(check(x1)) = 1 + x1 POL(found(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(f(x1)) = 1 + x1 POL(start(x1)) = x1
match(f(x), f(y)) -> f(match(x, y))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 12
↳Neg POLO
...
→DP Problem 14
↳Modular Removal of Rules
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(found(x)) -> found(f(x))
active(f(x)) -> mark(x)
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
POL(active(x1)) = x1 POL(match(x1, x2)) = x1 + x2 POL(X) = 0 POL(check(x1)) = x1 POL(found(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = x1 POL(ok(x1)) = x1 POL(f(x1)) = x1 POL(start(x1)) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 12
↳Neg POLO
...
→DP Problem 15
↳Modular Removal of Rules
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(found(x)) -> found(f(x))
active(f(x)) -> mark(x)
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
POL(active(x1)) = x1 POL(match(x1, x2)) = x1 + x2 POL(X) = 0 POL(check(x1)) = x1 POL(found(x1)) = 1 + x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(f(x1)) = x1 POL(start(x1)) = x1
TOP(found(x)) -> TOP(active(x))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 12
↳Neg POLO
...
→DP Problem 16
↳Modular Removal of Rules
TOP(mark(x)) -> TOP(check(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(found(x)) -> found(f(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
POL(match(x1, x2)) = x1 + x2 POL(X) = 0 POL(check(x1)) = x1 POL(found(x1)) = x1 POL(mark(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(f(x1)) = x1 POL(start(x1)) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 12
↳Neg POLO
...
→DP Problem 17
↳Modular Removal of Rules
TOP(mark(x)) -> TOP(check(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f(found(x)) -> found(f(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
POL(match(x1, x2)) = x1 + x2 POL(X) = 0 POL(check(x1)) = x1 POL(found(x1)) = x1 POL(mark(x1)) = 1 + x1 POL(TOP(x1)) = 1 + x1 POL(ok(x1)) = x1 POL(f(x1)) = x1 POL(start(x1)) = x1
TOP(mark(x)) -> TOP(check(x))
Innermost Termination of R successfully shown.
Duration:
0:01 minutes