Term Rewriting System R:
[x, y]
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(f(x)) -> F(active(x))
ACTIVE(f(x)) -> ACTIVE(x)
TOP(active(c)) -> TOP(mark(c))
TOP(mark(x)) -> TOP(check(x))
TOP(mark(x)) -> CHECK(x)
TOP(found(x)) -> TOP(active(x))
TOP(found(x)) -> ACTIVE(x)
CHECK(f(x)) -> F(check(x))
CHECK(f(x)) -> CHECK(x)
CHECK(x) -> START(match(f(X), x))
CHECK(x) -> MATCH(f(X), x)
CHECK(x) -> F(X)
MATCH(f(x), f(y)) -> F(match(x, y))
MATCH(f(x), f(y)) -> MATCH(x, y)
MATCH(X, x) -> PROPER(x)
PROPER(f(x)) -> F(proper(x))
PROPER(f(x)) -> PROPER(x)
F(ok(x)) -> F(x)
F(found(x)) -> F(x)
F(mark(x)) -> F(x)

Furthermore, R contains six SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pairs:

F(mark(x)) -> F(x)
F(found(x)) -> F(x)
F(ok(x)) -> F(x)


Rules:


active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)


Strategy:

innermost




As we are in the innermost case, we can delete all 15 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 7
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pairs:

F(mark(x)) -> F(x)
F(found(x)) -> F(x)
F(ok(x)) -> F(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. F(mark(x)) -> F(x)
  2. F(found(x)) -> F(x)
  3. F(ok(x)) -> F(x)
and get the following Size-Change Graph(s):
{1, 2, 3} , {1, 2, 3}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3} , {1, 2, 3}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
found(x1) -> found(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pair:

ACTIVE(f(x)) -> ACTIVE(x)


Rules:


active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)


Strategy:

innermost




As we are in the innermost case, we can delete all 15 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 8
Size-Change Principle
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pair:

ACTIVE(f(x)) -> ACTIVE(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. ACTIVE(f(x)) -> ACTIVE(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
f(x1) -> f(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pair:

PROPER(f(x)) -> PROPER(x)


Rules:


active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)


Strategy:

innermost




As we are in the innermost case, we can delete all 15 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 9
Size-Change Principle
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pair:

PROPER(f(x)) -> PROPER(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. PROPER(f(x)) -> PROPER(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
f(x1) -> f(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
Usable Rules (Innermost)
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pair:

MATCH(f(x), f(y)) -> MATCH(x, y)


Rules:


active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)


Strategy:

innermost




As we are in the innermost case, we can delete all 15 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
           →DP Problem 10
Size-Change Principle
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules


Dependency Pair:

MATCH(f(x), f(y)) -> MATCH(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. MATCH(f(x), f(y)) -> MATCH(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
f(x1) -> f(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
Usable Rules (Innermost)
       →DP Problem 6
UsableRules


Dependency Pair:

CHECK(f(x)) -> CHECK(x)


Rules:


active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)


Strategy:

innermost




As we are in the innermost case, we can delete all 15 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
           →DP Problem 11
Size-Change Principle
       →DP Problem 6
UsableRules


Dependency Pair:

CHECK(f(x)) -> CHECK(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. CHECK(f(x)) -> CHECK(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
f(x1) -> f(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
Usable Rules (Innermost)


Dependency Pairs:

TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
TOP(active(c)) -> TOP(mark(c))


Rules:


active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)


Strategy:

innermost




As we are in the innermost case, we can delete all 3 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
           →DP Problem 12
Negative Polynomial Order


Dependency Pairs:

TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
TOP(active(c)) -> TOP(mark(c))


Rules:


f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
match(f(x), f(y)) -> f(match(x, y))
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))


Strategy:

innermost




The following Dependency Pair can be strictly oriented using the given order.

TOP(active(c)) -> TOP(mark(c))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
match(f(x), f(y)) -> f(match(x, y))
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))


Used ordering:
Polynomial Order with Interpretation:

POL( TOP(x1) ) = x1

POL( active(x1) ) = x1

POL( c ) = 1

POL( mark(x1) ) = 0

POL( found(x1) ) = x1

POL( check(x1) ) = 0

POL( f(x1) ) = 0

POL( ok(x1) ) = x1

POL( match(x1, x2) ) = x1

POL( X ) = 1

POL( proper(x1) ) = 1

POL( start(x1) ) = x1


This results in one new DP problem.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
           →DP Problem 12
Neg POLO
             ...
               →DP Problem 13
Modular Removal of Rules


Dependency Pairs:

TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))


Rules:


f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
match(f(x), f(y)) -> f(match(x, y))
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))


Strategy:

innermost




We have the following set of usable rules:

f(found(x)) -> found(f(x))
active(f(x)) -> mark(x)
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
start(ok(x)) -> found(x)
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
match(f(x), f(y)) -> f(match(x, y))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(active(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(c)=  0  
  POL(match(x1, x2))=  x1 + x2  
  POL(X)=  0  
  POL(check(x1))=  1 + x1  
  POL(found(x1))=  x1  
  POL(mark(x1))=  1 + x1  
  POL(TOP(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(f(x1))=  1 + x1  
  POL(start(x1))=  x1  

We have the following set D of usable symbols: {proper, active, c, match, X, check, found, mark, TOP, ok, f, start}
No Dependency Pairs can be deleted.
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:

match(f(x), f(y)) -> f(match(x, y))


The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
           →DP Problem 12
Neg POLO
             ...
               →DP Problem 14
Modular Removal of Rules


Dependency Pairs:

TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))


Rules:


f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
match(X, x) -> proper(x)
proper(f(x)) -> f(proper(x))
proper(c) -> ok(c)
start(ok(x)) -> found(x)
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))


Strategy:

innermost




We have the following set of usable rules:

f(found(x)) -> found(f(x))
active(f(x)) -> mark(x)
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(active(x1))=  x1  
  POL(match(x1, x2))=  x1 + x2  
  POL(X)=  0  
  POL(check(x1))=  x1  
  POL(found(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(f(x1))=  x1  
  POL(start(x1))=  x1  

We have the following set D of usable symbols: {active, match, X, check, found, mark, TOP, ok, f, start}
No Dependency Pairs can be deleted.
4 non usable rules have been deleted.

The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
           →DP Problem 12
Neg POLO
             ...
               →DP Problem 15
Modular Removal of Rules


Dependency Pairs:

TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))


Rules:


f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))


Strategy:

innermost




We have the following set of usable rules:

f(found(x)) -> found(f(x))
active(f(x)) -> mark(x)
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(active(x1))=  x1  
  POL(match(x1, x2))=  x1 + x2  
  POL(X)=  0  
  POL(check(x1))=  x1  
  POL(found(x1))=  1 + x1  
  POL(mark(x1))=  x1  
  POL(TOP(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(f(x1))=  x1  
  POL(start(x1))=  x1  

We have the following set D of usable symbols: {active, match, X, check, found, mark, TOP, ok, f, start}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:

TOP(found(x)) -> TOP(active(x))

No Rules can be deleted.

The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
           →DP Problem 12
Neg POLO
             ...
               →DP Problem 16
Modular Removal of Rules


Dependency Pair:

TOP(mark(x)) -> TOP(check(x))


Rules:


f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))


Strategy:

innermost




We have the following set of usable rules:

f(found(x)) -> found(f(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(match(x1, x2))=  x1 + x2  
  POL(X)=  0  
  POL(check(x1))=  x1  
  POL(found(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(TOP(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(f(x1))=  x1  
  POL(start(x1))=  x1  

We have the following set D of usable symbols: {match, X, check, found, mark, TOP, ok, f, start}
No Dependency Pairs can be deleted.
2 non usable rules have been deleted.

The result of this processor delivers one new DP problem.



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
           →DP Problem 12
Neg POLO
             ...
               →DP Problem 17
Modular Removal of Rules


Dependency Pair:

TOP(mark(x)) -> TOP(check(x))


Rules:


f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))


Strategy:

innermost




We have the following set of usable rules:

f(found(x)) -> found(f(x))
check(x) -> start(match(f(X), x))
check(f(x)) -> f(check(x))
f(mark(x)) -> mark(f(x))
f(ok(x)) -> ok(f(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(match(x1, x2))=  x1 + x2  
  POL(X)=  0  
  POL(check(x1))=  x1  
  POL(found(x1))=  x1  
  POL(mark(x1))=  1 + x1  
  POL(TOP(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(f(x1))=  x1  
  POL(start(x1))=  x1  

We have the following set D of usable symbols: {match, X, check, found, mark, TOP, ok, f, start}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:

TOP(mark(x)) -> TOP(check(x))

No Rules can be deleted.

After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.


Innermost Termination of R successfully shown.
Duration:
0:01 minutes