R
↳Dependency Pair Analysis
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP1(free(x), y) -> CHECK(new(x))
TOP1(free(x), y) -> NEW(x)
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP1(free(x), y) -> CHECK(y)
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP1(free(x), y) -> CHECK(x)
TOP1(free(x), y) -> NEW(y)
TOP1(free(x), y) -> TOP2(x, check(new(y)))
TOP1(free(x), y) -> CHECK(new(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP2(x, free(y)) -> CHECK(new(x))
TOP2(x, free(y)) -> NEW(x)
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP2(x, free(y)) -> CHECK(y)
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP2(x, free(y)) -> CHECK(x)
TOP2(x, free(y)) -> NEW(y)
TOP2(x, free(y)) -> TOP1(x, check(new(y)))
TOP2(x, free(y)) -> CHECK(new(y))
NEW(free(x)) -> NEW(x)
OLD(free(x)) -> OLD(x)
CHECK(free(x)) -> CHECK(x)
CHECK(new(x)) -> NEW(check(x))
CHECK(new(x)) -> CHECK(x)
CHECK(old(x)) -> OLD(check(x))
CHECK(old(x)) -> CHECK(x)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
NEW(free(x)) -> NEW(x)
top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 6
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
NEW(free(x)) -> NEW(x)
none
innermost
|
|
trivial
free(x1) -> free(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
OLD(free(x)) -> OLD(x)
top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 7
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
OLD(free(x)) -> OLD(x)
none
innermost
|
|
trivial
free(x1) -> free(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
CHECK(free(x)) -> CHECK(x)
top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
CHECK(free(x)) -> CHECK(x)
none
innermost
|
|
trivial
free(x1) -> free(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
CHECK(old(x)) -> CHECK(x)
CHECK(new(x)) -> CHECK(x)
top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 5
↳UsableRules
CHECK(old(x)) -> CHECK(x)
CHECK(new(x)) -> CHECK(x)
none
innermost
|
|
trivial
old(x1) -> old(x1)
new(x1) -> new(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
TOP2(x, free(y)) -> TOP1(x, check(new(y)))
TOP1(free(x), y) -> TOP2(x, check(new(y)))
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), y) -> TOP2(check(new(x)), y)
top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳Modular Removal of Rules
TOP2(x, free(y)) -> TOP1(x, check(new(y)))
TOP1(free(x), y) -> TOP2(x, check(new(y)))
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), y) -> TOP2(check(new(x)), y)
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(serve) -> free(serve)
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(serve) -> free(serve)
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
POL(serve) = 0 POL(TOP2(x1, x2)) = x1 + x2 POL(old(x1)) = 1 + x1 POL(free(x1)) = x1 POL(check(x1)) = x1 POL(TOP1(x1, x2)) = x1 + x2 POL(new(x1)) = x1
old(serve) -> free(serve)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 11
↳Narrowing Transformation
TOP2(x, free(y)) -> TOP1(x, check(new(y)))
TOP1(free(x), y) -> TOP2(x, check(new(y)))
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), y) -> TOP2(check(new(x)), y)
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
three new Dependency Pairs are created:
TOP2(x, free(y)) -> TOP1(x, check(new(y)))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 12
↳Narrowing Transformation
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), y) -> TOP2(x, check(new(y)))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
three new Dependency Pairs are created:
TOP1(free(x), y) -> TOP2(x, check(new(y)))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 13
↳Narrowing Transformation
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
six new Dependency Pairs are created:
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(x''), new(y))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 14
↳Narrowing Transformation
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
six new Dependency Pairs are created:
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 15
↳Narrowing Transformation
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
six new Dependency Pairs are created:
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP2(free(x''), free(y)) -> TOP1(free(new(x'')), check(y))
TOP2(serve, free(y)) -> TOP1(free(serve), check(y))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(check(x'')))
TOP2(x, free(new(x''))) -> TOP1(new(x), new(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(x''))
TOP2(x, free(free(x''))) -> TOP1(new(x), free(check(x'')))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 16
↳Narrowing Transformation
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
TOP2(serve, free(y)) -> TOP1(free(serve), check(y))
TOP2(x, free(free(x''))) -> TOP1(new(x), free(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(x''))
TOP2(x, free(new(x''))) -> TOP1(new(x), new(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(check(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(new(x'')), check(y))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
six new Dependency Pairs are created:
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP1(free(free(x'')), y) -> TOP2(free(new(x'')), check(y))
TOP1(free(serve), y) -> TOP2(free(serve), check(y))
TOP1(free(x), old(x'')) -> TOP2(new(x), old(check(x'')))
TOP1(free(x), new(x'')) -> TOP2(new(x), new(check(x'')))
TOP1(free(x), old(x'')) -> TOP2(new(x), old(x''))
TOP1(free(x), free(x'')) -> TOP2(new(x), free(check(x'')))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 17
↳Narrowing Transformation
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
TOP2(serve, free(y)) -> TOP1(free(serve), check(y))
TOP1(free(x), free(x'')) -> TOP2(new(x), free(check(x'')))
TOP2(x, free(free(x''))) -> TOP1(new(x), free(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(x''))
TOP1(free(x), new(x'')) -> TOP2(new(x), new(check(x'')))
TOP2(x, free(new(x''))) -> TOP1(new(x), new(check(x'')))
TOP1(free(x), old(x'')) -> TOP2(new(x), old(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(check(x'')))
TOP1(free(serve), y) -> TOP2(free(serve), check(y))
TOP2(free(x''), free(y)) -> TOP1(free(new(x'')), check(y))
TOP1(free(free(x'')), y) -> TOP2(free(new(x'')), check(y))
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
three new Dependency Pairs are created:
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP2(x'', free(y)) -> TOP1(new(check(x'')), y)
TOP2(free(x''), free(y)) -> TOP1(check(free(new(x''))), y)
TOP2(serve, free(y)) -> TOP1(check(free(serve)), y)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 18
↳Narrowing Transformation
TOP2(serve, free(y)) -> TOP1(check(free(serve)), y)
TOP2(free(x''), free(y)) -> TOP1(check(free(new(x''))), y)
TOP1(free(x), new(x'')) -> TOP2(new(x), new(check(x'')))
TOP2(serve, free(y)) -> TOP1(free(serve), check(y))
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
TOP2(x'', free(y)) -> TOP1(new(check(x'')), y)
TOP1(free(x), free(x'')) -> TOP2(new(x), free(check(x'')))
TOP2(x, free(free(x''))) -> TOP1(new(x), free(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(x''))
TOP1(free(x), old(x'')) -> TOP2(new(x), old(check(x'')))
TOP2(x, free(new(x''))) -> TOP1(new(x), new(check(x'')))
TOP1(free(serve), y) -> TOP2(free(serve), check(y))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(check(x'')))
TOP1(free(free(x'')), y) -> TOP2(free(new(x'')), check(y))
TOP2(free(x''), free(y)) -> TOP1(free(new(x'')), check(y))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
three new Dependency Pairs are created:
TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP1(free(x''), y) -> TOP2(new(check(x'')), y)
TOP1(free(free(x'')), y) -> TOP2(check(free(new(x''))), y)
TOP1(free(serve), y) -> TOP2(check(free(serve)), y)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 19
↳Negative Polynomial Order
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
TOP2(free(x''), free(y)) -> TOP1(check(free(new(x''))), y)
TOP1(free(serve), y) -> TOP2(check(free(serve)), y)
TOP2(serve, free(y)) -> TOP1(free(serve), check(y))
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
TOP2(x'', free(y)) -> TOP1(new(check(x'')), y)
TOP1(free(free(x'')), y) -> TOP2(check(free(new(x''))), y)
TOP2(x, free(free(x''))) -> TOP1(new(x), free(check(x'')))
TOP1(free(x''), y) -> TOP2(new(check(x'')), y)
TOP2(x, free(old(x''))) -> TOP1(new(x), old(x''))
TOP1(free(x), free(x'')) -> TOP2(new(x), free(check(x'')))
TOP2(x, free(new(x''))) -> TOP1(new(x), new(check(x'')))
TOP1(free(x), new(x'')) -> TOP2(new(x), new(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(check(x'')))
TOP1(free(x), old(x'')) -> TOP2(new(x), old(check(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(new(x'')), check(y))
TOP1(free(serve), y) -> TOP2(free(serve), check(y))
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
TOP1(free(free(x'')), y) -> TOP2(free(new(x'')), check(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
TOP2(serve, free(y)) -> TOP1(check(free(serve)), y)
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
TOP1(free(serve), y) -> TOP2(check(free(serve)), y)
TOP2(serve, free(y)) -> TOP1(check(free(serve)), y)
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
check(free(x)) -> free(check(x))
POL( TOP1(x1, x2) ) = x1
POL( free(x1) ) = x1
POL( serve ) = 1
POL( TOP2(x1, x2) ) = x1
POL( check(x1) ) = 0
POL( new(x1) ) = x1
POL( old(x1) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 20
↳Negative Polynomial Order
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
TOP2(free(x''), free(y)) -> TOP1(check(free(new(x''))), y)
TOP2(serve, free(y)) -> TOP1(free(serve), check(y))
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
TOP2(x'', free(y)) -> TOP1(new(check(x'')), y)
TOP1(free(free(x'')), y) -> TOP2(check(free(new(x''))), y)
TOP2(x, free(free(x''))) -> TOP1(new(x), free(check(x'')))
TOP1(free(x''), y) -> TOP2(new(check(x'')), y)
TOP2(x, free(old(x''))) -> TOP1(new(x), old(x''))
TOP1(free(x), free(x'')) -> TOP2(new(x), free(check(x'')))
TOP2(x, free(new(x''))) -> TOP1(new(x), new(check(x'')))
TOP1(free(x), new(x'')) -> TOP2(new(x), new(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(check(x'')))
TOP1(free(x), old(x'')) -> TOP2(new(x), old(check(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(new(x'')), check(y))
TOP1(free(serve), y) -> TOP2(free(serve), check(y))
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
TOP1(free(free(x'')), y) -> TOP2(free(new(x'')), check(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost
TOP1(free(x), serve) -> TOP2(x, check(free(serve)))
TOP2(x, free(serve)) -> TOP1(x, check(free(serve)))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
check(free(x)) -> free(check(x))
POL( TOP1(x1, x2) ) = x1 + x2
POL( free(x1) ) = x1
POL( serve ) = 1
POL( TOP2(x1, x2) ) = x1 + x2
POL( check(x1) ) = 0
POL( new(x1) ) = x1
POL( old(x1) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳MRR
...
→DP Problem 21
↳Remaining Obligation(s)
TOP1(free(x), serve) -> TOP2(check(x), free(serve))
TOP2(free(x''), free(y)) -> TOP1(check(free(new(x''))), y)
TOP2(serve, free(y)) -> TOP1(free(serve), check(y))
TOP2(x'', free(y)) -> TOP1(new(check(x'')), y)
TOP1(free(free(x'')), y) -> TOP2(check(free(new(x''))), y)
TOP2(x, free(free(x''))) -> TOP1(new(x), free(check(x'')))
TOP1(free(x''), y) -> TOP2(new(check(x'')), y)
TOP2(x, free(old(x''))) -> TOP1(new(x), old(x''))
TOP1(free(x), free(x'')) -> TOP2(new(x), free(check(x'')))
TOP2(x, free(new(x''))) -> TOP1(new(x), new(check(x'')))
TOP1(free(x), new(x'')) -> TOP2(new(x), new(check(x'')))
TOP2(x, free(old(x''))) -> TOP1(new(x), old(check(x'')))
TOP1(free(x), old(x'')) -> TOP2(new(x), old(check(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(new(x'')), check(y))
TOP1(free(serve), y) -> TOP2(free(serve), check(y))
TOP2(x, free(serve)) -> TOP1(check(x), free(serve))
TOP1(free(free(x'')), y) -> TOP2(free(new(x'')), check(y))
TOP2(new(x''), free(y)) -> TOP1(new(check(x'')), new(y))
TOP1(free(x), free(x'')) -> TOP2(check(x), free(new(x'')))
TOP2(free(x''), free(y)) -> TOP1(free(check(x'')), new(y))
TOP1(free(free(x'')), y) -> TOP2(free(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(check(x), free(new(x'')))
TOP1(free(old(x'')), y) -> TOP2(old(x''), new(y))
TOP2(old(x''), free(y)) -> TOP1(old(check(x'')), new(y))
TOP1(free(new(x'')), y) -> TOP2(new(check(x'')), new(y))
TOP1(free(old(x'')), y) -> TOP2(old(check(x'')), new(y))
TOP2(x, free(free(x''))) -> TOP1(x, check(free(new(x''))))
TOP1(free(x), free(x'')) -> TOP2(x, check(free(new(x''))))
TOP2(x, free(y')) -> TOP1(x, new(check(y')))
TOP1(free(x), y') -> TOP2(x, new(check(y')))
check(old(x)) -> old(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(x)
check(free(x)) -> free(check(x))
old(free(x)) -> free(old(x))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
innermost