R
↳Dependency Pair Analysis
REC(rec(x)) -> SENT(rec(x))
REC(sent(x)) -> SENT(rec(x))
REC(sent(x)) -> REC(x)
REC(no(x)) -> SENT(rec(x))
REC(no(x)) -> REC(x)
REC(bot) -> SENT(bot)
REC(up(x)) -> REC(x)
SENT(up(x)) -> SENT(x)
NO(up(x)) -> NO(x)
TOP(rec(up(x))) -> TOP(check(rec(x)))
TOP(rec(up(x))) -> CHECK(rec(x))
TOP(rec(up(x))) -> REC(x)
TOP(sent(up(x))) -> TOP(check(rec(x)))
TOP(sent(up(x))) -> CHECK(rec(x))
TOP(sent(up(x))) -> REC(x)
TOP(no(up(x))) -> TOP(check(rec(x)))
TOP(no(up(x))) -> CHECK(rec(x))
TOP(no(up(x))) -> REC(x)
CHECK(up(x)) -> CHECK(x)
CHECK(sent(x)) -> SENT(check(x))
CHECK(sent(x)) -> CHECK(x)
CHECK(rec(x)) -> REC(check(x))
CHECK(rec(x)) -> CHECK(x)
CHECK(no(x)) -> NO(check(x))
CHECK(no(x)) -> CHECK(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
SENT(up(x)) -> SENT(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
SENT(up(x)) -> SENT(x)
SENT(up(up(x''))) -> SENT(up(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
SENT(up(up(x''))) -> SENT(up(x''))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
SENT(up(up(x''))) -> SENT(up(x''))
SENT(up(up(up(x'''')))) -> SENT(up(up(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
SENT(up(up(up(x'''')))) -> SENT(up(up(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
SENT(up(up(up(x'''')))) -> SENT(up(up(x'''')))
POL(up(x1)) = 1 + x1 POL(SENT(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
NO(up(x)) -> NO(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
NO(up(x)) -> NO(x)
NO(up(up(x''))) -> NO(up(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
NO(up(up(x''))) -> NO(up(x''))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
NO(up(up(x''))) -> NO(up(x''))
NO(up(up(up(x'''')))) -> NO(up(up(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
NO(up(up(up(x'''')))) -> NO(up(up(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
NO(up(up(up(x'''')))) -> NO(up(up(x'''')))
POL(NO(x1)) = 1 + x1 POL(up(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(up(x)) -> REC(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
REC(up(x)) -> REC(x)
REC(up(up(x''))) -> REC(up(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(up(up(x''))) -> REC(up(x''))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
REC(up(up(x''))) -> REC(up(x''))
REC(up(up(up(x'''')))) -> REC(up(up(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 14
↳Polynomial Ordering
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(up(up(up(x'''')))) -> REC(up(up(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
REC(up(up(up(x'''')))) -> REC(up(up(x'''')))
POL(up(x1)) = 1 + x1 POL(REC(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 15
↳Dependency Graph
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(no(x)) -> REC(x)
REC(sent(x)) -> REC(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
two new Dependency Pairs are created:
REC(sent(x)) -> REC(x)
REC(sent(sent(x''))) -> REC(sent(x''))
REC(sent(no(x''))) -> REC(no(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(sent(no(x''))) -> REC(no(x''))
REC(sent(sent(x''))) -> REC(sent(x''))
REC(no(x)) -> REC(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
REC(no(x)) -> REC(x)
REC(no(no(x''))) -> REC(no(x''))
REC(no(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(sent(no(x'''')))) -> REC(sent(no(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 17
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(no(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(sent(x''))) -> REC(sent(x''))
REC(no(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(no(x''))) -> REC(no(x''))
REC(sent(no(x''))) -> REC(no(x''))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
two new Dependency Pairs are created:
REC(sent(sent(x''))) -> REC(sent(x''))
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(sent(sent(no(x'''')))) -> REC(sent(no(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 18
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(sent(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(no(x''))) -> REC(no(x''))
REC(sent(no(x''))) -> REC(no(x''))
REC(no(sent(no(x'''')))) -> REC(sent(no(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
REC(sent(no(x''))) -> REC(no(x''))
REC(sent(no(no(x'''')))) -> REC(no(no(x'''')))
REC(sent(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(sent(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 19
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(sent(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
REC(sent(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(no(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(no(x''))) -> REC(no(x''))
REC(sent(no(no(x'''')))) -> REC(no(no(x'''')))
REC(sent(sent(no(x'''')))) -> REC(sent(no(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
REC(no(no(x''))) -> REC(no(x''))
REC(no(no(no(x'''')))) -> REC(no(no(x'''')))
REC(no(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(no(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 20
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(no(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
REC(sent(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(sent(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(no(no(no(x'''')))) -> REC(no(no(x'''')))
REC(sent(no(no(x'''')))) -> REC(no(no(x'''')))
REC(no(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
two new Dependency Pairs are created:
REC(no(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(sent(sent(sent(x''''''))))) -> REC(sent(sent(sent(x''''''))))
REC(no(sent(sent(no(x''''''))))) -> REC(sent(sent(no(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 21
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(sent(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
REC(no(sent(sent(no(x''''''))))) -> REC(sent(sent(no(x''''''))))
REC(sent(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(sent(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(sent(sent(sent(x''''''))))) -> REC(sent(sent(sent(x''''''))))
REC(no(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(no(no(no(x'''')))) -> REC(no(no(x'''')))
REC(sent(no(no(x'''')))) -> REC(no(no(x'''')))
REC(no(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(no(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
REC(no(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(no(sent(no(no(x''''''))))) -> REC(sent(no(no(x''''''))))
REC(no(sent(no(sent(sent(x'''''''')))))) -> REC(sent(no(sent(sent(x'''''''')))))
REC(no(sent(no(sent(no(x'''''''')))))) -> REC(sent(no(sent(no(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 22
↳Polynomial Ordering
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(no(sent(no(sent(no(x'''''''')))))) -> REC(sent(no(sent(no(x'''''''')))))
REC(no(sent(no(sent(sent(x'''''''')))))) -> REC(sent(no(sent(sent(x'''''''')))))
REC(no(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
REC(no(sent(sent(no(x''''''))))) -> REC(sent(sent(no(x''''''))))
REC(sent(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(sent(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(no(sent(sent(sent(x''''''))))) -> REC(sent(sent(sent(x''''''))))
REC(no(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(no(no(no(x'''')))) -> REC(no(no(x'''')))
REC(sent(no(no(x'''')))) -> REC(no(no(x'''')))
REC(no(sent(no(no(x''''''))))) -> REC(sent(no(no(x''''''))))
REC(sent(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
REC(no(sent(no(sent(no(x'''''''')))))) -> REC(sent(no(sent(no(x'''''''')))))
REC(no(sent(no(sent(sent(x'''''''')))))) -> REC(sent(no(sent(sent(x'''''''')))))
REC(no(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
REC(no(sent(sent(no(x''''''))))) -> REC(sent(sent(no(x''''''))))
REC(no(sent(sent(sent(x''''''))))) -> REC(sent(sent(sent(x''''''))))
REC(no(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(no(no(no(x'''')))) -> REC(no(no(x'''')))
REC(no(sent(no(no(x''''''))))) -> REC(sent(no(no(x''''''))))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
POL(no(x1)) = 1 + x1 POL(up(x1)) = 0 POL(REC(x1)) = 1 + x1 POL(sent(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 23
↳Dependency Graph
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(sent(no(sent(sent(x''''''))))) -> REC(no(sent(sent(x''''''))))
REC(sent(sent(no(x'''')))) -> REC(sent(no(x'''')))
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
REC(sent(no(no(x'''')))) -> REC(no(no(x'''')))
REC(sent(no(sent(no(x''''''))))) -> REC(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 24
↳Polynomial Ordering
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
REC(sent(sent(sent(x'''')))) -> REC(sent(sent(x'''')))
sent(up(x)) -> up(sent(x))
POL(up(x1)) = 0 POL(REC(x1)) = 1 + x1 POL(sent(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 16
↳FwdInst
...
→DP Problem 25
↳Dependency Graph
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 6
↳FwdInst
CHECK(up(x)) -> CHECK(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
CHECK(up(x)) -> CHECK(x)
CHECK(up(up(x''))) -> CHECK(up(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 26
↳Forward Instantiation Transformation
→DP Problem 6
↳FwdInst
CHECK(up(up(x''))) -> CHECK(up(x''))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
one new Dependency Pair is created:
CHECK(up(up(x''))) -> CHECK(up(x''))
CHECK(up(up(up(x'''')))) -> CHECK(up(up(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 26
↳FwdInst
...
→DP Problem 27
↳Polynomial Ordering
→DP Problem 6
↳FwdInst
CHECK(up(up(up(x'''')))) -> CHECK(up(up(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
CHECK(up(up(up(x'''')))) -> CHECK(up(up(x'''')))
POL(up(x1)) = 1 + x1 POL(CHECK(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 26
↳FwdInst
...
→DP Problem 28
↳Dependency Graph
→DP Problem 6
↳FwdInst
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
CHECK(no(x)) -> CHECK(x)
CHECK(sent(x)) -> CHECK(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
two new Dependency Pairs are created:
CHECK(sent(x)) -> CHECK(x)
CHECK(sent(sent(x''))) -> CHECK(sent(x''))
CHECK(sent(no(x''))) -> CHECK(no(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳Forward Instantiation Transformation
CHECK(sent(no(x''))) -> CHECK(no(x''))
CHECK(sent(sent(x''))) -> CHECK(sent(x''))
CHECK(no(x)) -> CHECK(x)
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
CHECK(no(x)) -> CHECK(x)
CHECK(no(no(x''))) -> CHECK(no(x''))
CHECK(no(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 30
↳Forward Instantiation Transformation
CHECK(no(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(sent(x''))) -> CHECK(sent(x''))
CHECK(no(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(no(x''))) -> CHECK(no(x''))
CHECK(sent(no(x''))) -> CHECK(no(x''))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
two new Dependency Pairs are created:
CHECK(sent(sent(x''))) -> CHECK(sent(x''))
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(sent(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 31
↳Forward Instantiation Transformation
CHECK(sent(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(no(x''))) -> CHECK(no(x''))
CHECK(sent(no(x''))) -> CHECK(no(x''))
CHECK(no(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
CHECK(sent(no(x''))) -> CHECK(no(x''))
CHECK(sent(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(sent(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(sent(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 32
↳Forward Instantiation Transformation
CHECK(sent(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
CHECK(sent(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(no(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(no(x''))) -> CHECK(no(x''))
CHECK(sent(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(sent(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
CHECK(no(no(x''))) -> CHECK(no(x''))
CHECK(no(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(no(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(no(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 33
↳Forward Instantiation Transformation
CHECK(no(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
CHECK(sent(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(sent(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(no(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(sent(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(no(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
two new Dependency Pairs are created:
CHECK(no(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(sent(sent(sent(x''''''))))) -> CHECK(sent(sent(sent(x''''''))))
CHECK(no(sent(sent(no(x''''''))))) -> CHECK(sent(sent(no(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 34
↳Forward Instantiation Transformation
CHECK(sent(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
CHECK(no(sent(sent(no(x''''''))))) -> CHECK(sent(sent(no(x''''''))))
CHECK(sent(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(sent(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(sent(sent(sent(x''''''))))) -> CHECK(sent(sent(sent(x''''''))))
CHECK(no(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(no(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(sent(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(no(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(no(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
three new Dependency Pairs are created:
CHECK(no(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(no(sent(no(no(x''''''))))) -> CHECK(sent(no(no(x''''''))))
CHECK(no(sent(no(sent(sent(x'''''''')))))) -> CHECK(sent(no(sent(sent(x'''''''')))))
CHECK(no(sent(no(sent(no(x'''''''')))))) -> CHECK(sent(no(sent(no(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 35
↳Polynomial Ordering
CHECK(no(sent(no(sent(no(x'''''''')))))) -> CHECK(sent(no(sent(no(x'''''''')))))
CHECK(no(sent(no(sent(sent(x'''''''')))))) -> CHECK(sent(no(sent(sent(x'''''''')))))
CHECK(no(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
CHECK(no(sent(sent(no(x''''''))))) -> CHECK(sent(sent(no(x''''''))))
CHECK(sent(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(sent(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(no(sent(sent(sent(x''''''))))) -> CHECK(sent(sent(sent(x''''''))))
CHECK(no(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(no(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(sent(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(no(sent(no(no(x''''''))))) -> CHECK(sent(no(no(x''''''))))
CHECK(sent(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
CHECK(no(sent(no(sent(no(x'''''''')))))) -> CHECK(sent(no(sent(no(x'''''''')))))
CHECK(no(sent(no(sent(sent(x'''''''')))))) -> CHECK(sent(no(sent(sent(x'''''''')))))
CHECK(no(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
CHECK(no(sent(sent(no(x''''''))))) -> CHECK(sent(sent(no(x''''''))))
CHECK(no(sent(sent(sent(x''''''))))) -> CHECK(sent(sent(sent(x''''''))))
CHECK(no(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(no(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(no(sent(no(no(x''''''))))) -> CHECK(sent(no(no(x''''''))))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
POL(no(x1)) = 1 + x1 POL(up(x1)) = 0 POL(CHECK(x1)) = 1 + x1 POL(sent(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 36
↳Dependency Graph
CHECK(sent(no(sent(sent(x''''''))))) -> CHECK(no(sent(sent(x''''''))))
CHECK(sent(sent(no(x'''')))) -> CHECK(sent(no(x'''')))
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
CHECK(sent(no(no(x'''')))) -> CHECK(no(no(x'''')))
CHECK(sent(no(sent(no(x''''''))))) -> CHECK(no(sent(no(x''''''))))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 37
↳Polynomial Ordering
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost
CHECK(sent(sent(sent(x'''')))) -> CHECK(sent(sent(x'''')))
sent(up(x)) -> up(sent(x))
POL(up(x1)) = 0 POL(CHECK(x1)) = 1 + x1 POL(sent(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 29
↳FwdInst
...
→DP Problem 38
↳Dependency Graph
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
innermost