R
↳Dependency Pair Analysis
TOP(sent(x)) -> TOP(check(rest(x)))
TOP(sent(x)) -> CHECK(rest(x))
TOP(sent(x)) -> REST(x)
CHECK(sent(x)) -> CHECK(x)
CHECK(rest(x)) -> REST(check(x))
CHECK(rest(x)) -> CHECK(x)
CHECK(cons(x, y)) -> CHECK(x)
CHECK(cons(x, y)) -> CHECK(y)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
CHECK(cons(x, y)) -> CHECK(y)
CHECK(cons(x, y)) -> CHECK(x)
CHECK(rest(x)) -> CHECK(x)
CHECK(sent(x)) -> CHECK(x)
top(sent(x)) -> top(check(rest(x)))
rest(nil) -> sent(nil)
rest(cons(x, y)) -> sent(y)
check(sent(x)) -> sent(check(x))
check(rest(x)) -> rest(check(x))
check(cons(x, y)) -> cons(check(x), y)
check(cons(x, y)) -> cons(x, check(y))
check(cons(x, y)) -> cons(x, y)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
CHECK(cons(x, y)) -> CHECK(y)
CHECK(cons(x, y)) -> CHECK(x)
CHECK(rest(x)) -> CHECK(x)
CHECK(sent(x)) -> CHECK(x)
none
innermost
|
|
|
|
|
|
|
|
|
|
|
trivial
rest(x1) -> rest(x1)
cons(x1, x2) -> cons(x1, x2)
sent(x1) -> sent(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
TOP(sent(x)) -> TOP(check(rest(x)))
top(sent(x)) -> top(check(rest(x)))
rest(nil) -> sent(nil)
rest(cons(x, y)) -> sent(y)
check(sent(x)) -> sent(check(x))
check(rest(x)) -> rest(check(x))
check(cons(x, y)) -> cons(check(x), y)
check(cons(x, y)) -> cons(x, check(y))
check(cons(x, y)) -> cons(x, y)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Modular Removal of Rules
TOP(sent(x)) -> TOP(check(rest(x)))
check(cons(x, y)) -> cons(x, check(y))
check(cons(x, y)) -> cons(x, y)
check(sent(x)) -> sent(check(x))
check(rest(x)) -> rest(check(x))
check(cons(x, y)) -> cons(check(x), y)
rest(cons(x, y)) -> sent(y)
rest(nil) -> sent(nil)
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
check(cons(x, y)) -> cons(x, check(y))
check(cons(x, y)) -> cons(x, y)
check(sent(x)) -> sent(check(x))
check(rest(x)) -> rest(check(x))
check(cons(x, y)) -> cons(check(x), y)
rest(cons(x, y)) -> sent(y)
rest(nil) -> sent(nil)
POL(rest(x1)) = x1 POL(cons(x1, x2)) = 1 + x1 + x2 POL(check(x1)) = x1 POL(nil) = 0 POL(TOP(x1)) = x1 POL(sent(x1)) = x1
rest(cons(x, y)) -> sent(y)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 5
↳Narrowing Transformation
TOP(sent(x)) -> TOP(check(rest(x)))
check(cons(x, y)) -> cons(x, check(y))
check(cons(x, y)) -> cons(x, y)
check(sent(x)) -> sent(check(x))
check(rest(x)) -> rest(check(x))
check(cons(x, y)) -> cons(check(x), y)
rest(nil) -> sent(nil)
innermost
two new Dependency Pairs are created:
TOP(sent(x)) -> TOP(check(rest(x)))
TOP(sent(x'')) -> TOP(rest(check(x'')))
TOP(sent(nil)) -> TOP(check(sent(nil)))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 6
↳Negative Polynomial Order
TOP(sent(nil)) -> TOP(check(sent(nil)))
TOP(sent(x'')) -> TOP(rest(check(x'')))
check(cons(x, y)) -> cons(x, check(y))
check(cons(x, y)) -> cons(x, y)
check(sent(x)) -> sent(check(x))
check(rest(x)) -> rest(check(x))
check(cons(x, y)) -> cons(check(x), y)
rest(nil) -> sent(nil)
innermost
TOP(sent(nil)) -> TOP(check(sent(nil)))
check(cons(x, y)) -> cons(x, check(y))
rest(nil) -> sent(nil)
check(cons(x, y)) -> cons(x, y)
check(rest(x)) -> rest(check(x))
check(sent(x)) -> sent(check(x))
check(cons(x, y)) -> cons(check(x), y)
POL( TOP(x1) ) = x1
POL( sent(x1) ) = x1
POL( nil ) = 1
POL( check(x1) ) = 0
POL( rest(x1) ) = x1
POL( cons(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳MRR
...
→DP Problem 7
↳Semantic Labelling
TOP(sent(x'')) -> TOP(rest(check(x'')))
check(cons(x, y)) -> cons(x, check(y))
check(cons(x, y)) -> cons(x, y)
check(sent(x)) -> sent(check(x))
check(rest(x)) -> rest(check(x))
check(cons(x, y)) -> cons(check(x), y)
rest(nil) -> sent(nil)
innermost
check(x0) = 0 cons(x0, x1) = 0 TOP(x0) = 0 sent(x0) = 0 rest(x0) = 0 nil = 1