R
↳Dependency Pair Analysis
MINUSACTIVE(s(x), s(y)) -> MINUSACTIVE(x, y)
MARK(s(x)) -> MARK(x)
MARK(minus(x, y)) -> MINUSACTIVE(x, y)
MARK(ge(x, y)) -> GEACTIVE(x, y)
MARK(div(x, y)) -> DIVACTIVE(mark(x), y)
MARK(div(x, y)) -> MARK(x)
MARK(if(x, y, z)) -> IFACTIVE(mark(x), y, z)
MARK(if(x, y, z)) -> MARK(x)
GEACTIVE(s(x), s(y)) -> GEACTIVE(x, y)
DIVACTIVE(s(x), s(y)) -> IFACTIVE(geactive(x, y), s(div(minus(x, y), s(y))), 0)
DIVACTIVE(s(x), s(y)) -> GEACTIVE(x, y)
IFACTIVE(true, x, y) -> MARK(x)
IFACTIVE(false, x, y) -> MARK(y)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Neg POLO
MINUSACTIVE(s(x), s(y)) -> MINUSACTIVE(x, y)
minusactive(0, y) -> 0
minusactive(s(x), s(y)) -> minusactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(0) -> 0
mark(s(x)) -> s(mark(x))
mark(minus(x, y)) -> minusactive(x, y)
mark(ge(x, y)) -> geactive(x, y)
mark(div(x, y)) -> divactive(mark(x), y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
divactive(0, s(y)) -> 0
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
divactive(x, y) -> div(x, y)
ifactive(true, x, y) -> mark(x)
ifactive(false, x, y) -> mark(y)
ifactive(x, y, z) -> if(x, y, z)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Neg POLO
MINUSACTIVE(s(x), s(y)) -> MINUSACTIVE(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳Neg POLO
GEACTIVE(s(x), s(y)) -> GEACTIVE(x, y)
minusactive(0, y) -> 0
minusactive(s(x), s(y)) -> minusactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(0) -> 0
mark(s(x)) -> s(mark(x))
mark(minus(x, y)) -> minusactive(x, y)
mark(ge(x, y)) -> geactive(x, y)
mark(div(x, y)) -> divactive(mark(x), y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
divactive(0, s(y)) -> 0
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
divactive(x, y) -> div(x, y)
ifactive(true, x, y) -> mark(x)
ifactive(false, x, y) -> mark(y)
ifactive(x, y, z) -> if(x, y, z)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 3
↳Neg POLO
GEACTIVE(s(x), s(y)) -> GEACTIVE(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Negative Polynomial Order
MARK(if(x, y, z)) -> MARK(x)
IFACTIVE(false, x, y) -> MARK(y)
MARK(if(x, y, z)) -> IFACTIVE(mark(x), y, z)
MARK(div(x, y)) -> MARK(x)
IFACTIVE(true, x, y) -> MARK(x)
DIVACTIVE(s(x), s(y)) -> IFACTIVE(geactive(x, y), s(div(minus(x, y), s(y))), 0)
MARK(div(x, y)) -> DIVACTIVE(mark(x), y)
MARK(s(x)) -> MARK(x)
minusactive(0, y) -> 0
minusactive(s(x), s(y)) -> minusactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(0) -> 0
mark(s(x)) -> s(mark(x))
mark(minus(x, y)) -> minusactive(x, y)
mark(ge(x, y)) -> geactive(x, y)
mark(div(x, y)) -> divactive(mark(x), y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
divactive(0, s(y)) -> 0
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
divactive(x, y) -> div(x, y)
ifactive(true, x, y) -> mark(x)
ifactive(false, x, y) -> mark(y)
ifactive(x, y, z) -> if(x, y, z)
innermost
MARK(div(x, y)) -> MARK(x)
ifactive(true, x, y) -> mark(x)
mark(div(x, y)) -> divactive(mark(x), y)
mark(minus(x, y)) -> minusactive(x, y)
divactive(0, s(y)) -> 0
geactive(s(x), s(y)) -> geactive(x, y)
ifactive(x, y, z) -> if(x, y, z)
minusactive(s(x), s(y)) -> minusactive(x, y)
geactive(x, 0) -> true
mark(s(x)) -> s(mark(x))
geactive(0, s(y)) -> false
ifactive(false, x, y) -> mark(y)
minusactive(0, y) -> 0
mark(ge(x, y)) -> geactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, y) -> ge(x, y)
divactive(x, y) -> div(x, y)
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
mark(0) -> 0
POL( MARK(x1) ) = x1
POL( div(x1, x2) ) = x1 + 1
POL( DIVACTIVE(x1, x2) ) = 1
POL( IFACTIVE(x1, ..., x3) ) = x2 + x3
POL( s(x1) ) = x1
POL( minus(x1, x2) ) = 0
POL( 0 ) = 0
POL( if(x1, ..., x3) ) = x1 + x2 + x3
POL( ifactive(x1, ..., x3) ) = x1 + x2 + x3
POL( true ) = 0
POL( mark(x1) ) = x1
POL( divactive(x1, x2) ) = x1 + 1
POL( minusactive(x1, x2) ) = 0
POL( geactive(x1, x2) ) = 0
POL( false ) = 0
POL( ge(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Neg POLO
→DP Problem 6
↳Negative Polynomial Order
MARK(if(x, y, z)) -> MARK(x)
IFACTIVE(false, x, y) -> MARK(y)
MARK(if(x, y, z)) -> IFACTIVE(mark(x), y, z)
IFACTIVE(true, x, y) -> MARK(x)
DIVACTIVE(s(x), s(y)) -> IFACTIVE(geactive(x, y), s(div(minus(x, y), s(y))), 0)
MARK(div(x, y)) -> DIVACTIVE(mark(x), y)
MARK(s(x)) -> MARK(x)
minusactive(0, y) -> 0
minusactive(s(x), s(y)) -> minusactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(0) -> 0
mark(s(x)) -> s(mark(x))
mark(minus(x, y)) -> minusactive(x, y)
mark(ge(x, y)) -> geactive(x, y)
mark(div(x, y)) -> divactive(mark(x), y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
divactive(0, s(y)) -> 0
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
divactive(x, y) -> div(x, y)
ifactive(true, x, y) -> mark(x)
ifactive(false, x, y) -> mark(y)
ifactive(x, y, z) -> if(x, y, z)
innermost
MARK(if(x, y, z)) -> MARK(x)
MARK(if(x, y, z)) -> IFACTIVE(mark(x), y, z)
ifactive(true, x, y) -> mark(x)
mark(div(x, y)) -> divactive(mark(x), y)
mark(minus(x, y)) -> minusactive(x, y)
divactive(0, s(y)) -> 0
geactive(s(x), s(y)) -> geactive(x, y)
ifactive(x, y, z) -> if(x, y, z)
minusactive(s(x), s(y)) -> minusactive(x, y)
geactive(x, 0) -> true
mark(s(x)) -> s(mark(x))
geactive(0, s(y)) -> false
ifactive(false, x, y) -> mark(y)
minusactive(0, y) -> 0
mark(ge(x, y)) -> geactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, y) -> ge(x, y)
divactive(x, y) -> div(x, y)
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
mark(0) -> 0
POL( MARK(x1) ) = x1
POL( if(x1, ..., x3) ) = x1 + x2 + x3 + 1
POL( DIVACTIVE(x1, x2) ) = 0
POL( IFACTIVE(x1, ..., x3) ) = x2 + x3
POL( s(x1) ) = x1
POL( div(x1, x2) ) = 0
POL( 0 ) = 0
POL( ifactive(x1, ..., x3) ) = x1 + x2 + x3 + 1
POL( true ) = 0
POL( mark(x1) ) = x1 + 1
POL( divactive(x1, x2) ) = 1
POL( minus(x1, x2) ) = 0
POL( minusactive(x1, x2) ) = 0
POL( geactive(x1, x2) ) = 0
POL( false ) = 0
POL( ge(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Neg POLO
→DP Problem 6
↳Neg POLO
...
→DP Problem 7
↳Negative Polynomial Order
IFACTIVE(false, x, y) -> MARK(y)
IFACTIVE(true, x, y) -> MARK(x)
DIVACTIVE(s(x), s(y)) -> IFACTIVE(geactive(x, y), s(div(minus(x, y), s(y))), 0)
MARK(div(x, y)) -> DIVACTIVE(mark(x), y)
MARK(s(x)) -> MARK(x)
minusactive(0, y) -> 0
minusactive(s(x), s(y)) -> minusactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(0) -> 0
mark(s(x)) -> s(mark(x))
mark(minus(x, y)) -> minusactive(x, y)
mark(ge(x, y)) -> geactive(x, y)
mark(div(x, y)) -> divactive(mark(x), y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
divactive(0, s(y)) -> 0
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
divactive(x, y) -> div(x, y)
ifactive(true, x, y) -> mark(x)
ifactive(false, x, y) -> mark(y)
ifactive(x, y, z) -> if(x, y, z)
innermost
MARK(s(x)) -> MARK(x)
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
ifactive(true, x, y) -> mark(x)
mark(div(x, y)) -> divactive(mark(x), y)
mark(minus(x, y)) -> minusactive(x, y)
divactive(0, s(y)) -> 0
ifactive(x, y, z) -> if(x, y, z)
minusactive(s(x), s(y)) -> minusactive(x, y)
mark(s(x)) -> s(mark(x))
ifactive(false, x, y) -> mark(y)
minusactive(0, y) -> 0
mark(ge(x, y)) -> geactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
divactive(x, y) -> div(x, y)
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
mark(0) -> 0
POL( MARK(x1) ) = x1
POL( s(x1) ) = x1 + 1
POL( IFACTIVE(x1, ..., x3) ) = x2 + x3
POL( DIVACTIVE(x1, x2) ) = x1
POL( div(x1, x2) ) = x1
POL( minus(x1, x2) ) = 0
POL( 0 ) = 0
POL( mark(x1) ) = x1
POL( geactive(x1, x2) ) = 0
POL( ge(x1, x2) ) = 0
POL( true ) = 0
POL( false ) = 0
POL( ifactive(x1, ..., x3) ) = x2 + x3
POL( divactive(x1, x2) ) = x1
POL( minusactive(x1, x2) ) = 0
POL( if(x1, ..., x3) ) = x2 + x3
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Neg POLO
→DP Problem 6
↳Neg POLO
...
→DP Problem 8
↳Negative Polynomial Order
IFACTIVE(false, x, y) -> MARK(y)
IFACTIVE(true, x, y) -> MARK(x)
DIVACTIVE(s(x), s(y)) -> IFACTIVE(geactive(x, y), s(div(minus(x, y), s(y))), 0)
MARK(div(x, y)) -> DIVACTIVE(mark(x), y)
minusactive(0, y) -> 0
minusactive(s(x), s(y)) -> minusactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(0) -> 0
mark(s(x)) -> s(mark(x))
mark(minus(x, y)) -> minusactive(x, y)
mark(ge(x, y)) -> geactive(x, y)
mark(div(x, y)) -> divactive(mark(x), y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
divactive(0, s(y)) -> 0
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
divactive(x, y) -> div(x, y)
ifactive(true, x, y) -> mark(x)
ifactive(false, x, y) -> mark(y)
ifactive(x, y, z) -> if(x, y, z)
innermost
IFACTIVE(false, x, y) -> MARK(y)
IFACTIVE(true, x, y) -> MARK(x)
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
ifactive(true, x, y) -> mark(x)
mark(div(x, y)) -> divactive(mark(x), y)
mark(minus(x, y)) -> minusactive(x, y)
divactive(0, s(y)) -> 0
ifactive(x, y, z) -> if(x, y, z)
minusactive(s(x), s(y)) -> minusactive(x, y)
mark(s(x)) -> s(mark(x))
ifactive(false, x, y) -> mark(y)
minusactive(0, y) -> 0
mark(ge(x, y)) -> geactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
divactive(x, y) -> div(x, y)
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
mark(0) -> 0
POL( IFACTIVE(x1, ..., x3) ) = x2 + x3 + 1
POL( MARK(x1) ) = x1
POL( DIVACTIVE(x1, x2) ) = 1
POL( s(x1) ) = 0
POL( 0 ) = 0
POL( div(x1, x2) ) = 1
POL( geactive(x1, x2) ) = 0
POL( ge(x1, x2) ) = 0
POL( true ) = 0
POL( false ) = 0
POL( ifactive(x1, ..., x3) ) = 1
POL( mark(x1) ) = 1
POL( divactive(x1, x2) ) = 1
POL( minusactive(x1, x2) ) = 0
POL( if(x1, ..., x3) ) = 0
POL( minus(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Neg POLO
→DP Problem 6
↳Neg POLO
...
→DP Problem 9
↳Dependency Graph
DIVACTIVE(s(x), s(y)) -> IFACTIVE(geactive(x, y), s(div(minus(x, y), s(y))), 0)
MARK(div(x, y)) -> DIVACTIVE(mark(x), y)
minusactive(0, y) -> 0
minusactive(s(x), s(y)) -> minusactive(x, y)
minusactive(x, y) -> minus(x, y)
mark(0) -> 0
mark(s(x)) -> s(mark(x))
mark(minus(x, y)) -> minusactive(x, y)
mark(ge(x, y)) -> geactive(x, y)
mark(div(x, y)) -> divactive(mark(x), y)
mark(if(x, y, z)) -> ifactive(mark(x), y, z)
geactive(x, 0) -> true
geactive(0, s(y)) -> false
geactive(s(x), s(y)) -> geactive(x, y)
geactive(x, y) -> ge(x, y)
divactive(0, s(y)) -> 0
divactive(s(x), s(y)) -> ifactive(geactive(x, y), s(div(minus(x, y), s(y))), 0)
divactive(x, y) -> div(x, y)
ifactive(true, x, y) -> mark(x)
ifactive(false, x, y) -> mark(y)
ifactive(x, y, z) -> if(x, y, z)
innermost