R
↳Dependency Pair Analysis
ACTIVE(f(b, c, x)) -> F(x, x, x)
ACTIVE(f(x, y, z)) -> F(x, y, active(z))
ACTIVE(f(x, y, z)) -> ACTIVE(z)
F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
PROPER(f(x, y, z)) -> F(proper(x), proper(y), proper(z))
PROPER(f(x, y, z)) -> PROPER(x)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(z)
TOP(mark(x)) -> TOP(proper(x))
TOP(mark(x)) -> PROPER(x)
TOP(ok(x)) -> TOP(active(x))
TOP(ok(x)) -> ACTIVE(x)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
none
innermost
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
ACTIVE(f(x, y, z)) -> ACTIVE(z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
ACTIVE(f(x, y, z)) -> ACTIVE(z)
none
innermost
|
|
trivial
f(x1, x2, x3) -> f(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 7
↳Size-Change Principle
→DP Problem 4
↳UsableRules
PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)
none
innermost
|
|
trivial
f(x1, x2, x3) -> f(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
TOP(ok(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(proper(x))
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Narrowing Transformation
TOP(ok(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(proper(x))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
f(x, y, mark(z)) -> mark(f(x, y, z))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
active(f(b, c, x)) -> mark(f(x, x, x))
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
proper(c) -> ok(c)
proper(b) -> ok(b)
proper(d) -> ok(d)
innermost
four new Dependency Pairs are created:
TOP(ok(x)) -> TOP(active(x))
TOP(ok(f(x'', y', z'))) -> TOP(f(x'', y', active(z')))
TOP(ok(d)) -> TOP(m(b))
TOP(ok(d)) -> TOP(mark(c))
TOP(ok(f(b, c, x''))) -> TOP(mark(f(x'', x'', x'')))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
TOP(ok(d)) -> TOP(mark(c))
TOP(ok(f(b, c, x''))) -> TOP(mark(f(x'', x'', x'')))
TOP(ok(f(x'', y', z'))) -> TOP(f(x'', y', active(z')))
TOP(mark(x)) -> TOP(proper(x))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
f(x, y, mark(z)) -> mark(f(x, y, z))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
active(f(b, c, x)) -> mark(f(x, x, x))
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
proper(c) -> ok(c)
proper(b) -> ok(b)
proper(d) -> ok(d)
innermost
four new Dependency Pairs are created:
TOP(mark(x)) -> TOP(proper(x))
TOP(mark(f(x'', y', z'))) -> TOP(f(proper(x''), proper(y'), proper(z')))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(b)) -> TOP(ok(b))
TOP(mark(d)) -> TOP(ok(d))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 8
↳Nar
...
→DP Problem 10
↳Remaining Obligation(s)
TOP(ok(f(x'', y', z'))) -> TOP(f(x'', y', active(z')))
TOP(mark(f(x'', y', z'))) -> TOP(f(proper(x''), proper(y'), proper(z')))
TOP(ok(f(b, c, x''))) -> TOP(mark(f(x'', x'', x'')))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
f(x, y, mark(z)) -> mark(f(x, y, z))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
active(f(b, c, x)) -> mark(f(x, x, x))
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
proper(c) -> ok(c)
proper(b) -> ok(b)
proper(d) -> ok(d)
innermost