Term Rewriting System R:
[x, y, z]
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(f(b, c, x)) -> F(x, x, x)
ACTIVE(f(x, y, z)) -> F(x, y, active(z))
ACTIVE(f(x, y, z)) -> ACTIVE(z)
F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
PROPER(f(x, y, z)) -> F(proper(x), proper(y), proper(z))
PROPER(f(x, y, z)) -> PROPER(x)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(z)
TOP(mark(x)) -> TOP(proper(x))
TOP(mark(x)) -> PROPER(x)
TOP(ok(x)) -> TOP(active(x))
TOP(ok(x)) -> ACTIVE(x)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules


Dependency Pairs:

F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)


Rules:


active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))


Strategy:

innermost




As we are in the innermost case, we can delete all 12 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 5
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules


Dependency Pairs:

F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. F(x, y, mark(z)) -> F(x, y, z)
  2. F(ok(x), ok(y), ok(z)) -> F(x, y, z)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1=1
2=2
3>3
{1, 2} , {1, 2}
1>1
2>2
3>3

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1=1
2=2
3>3
{1, 2} , {1, 2}
1>1
2>2
3>3

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules


Dependency Pair:

ACTIVE(f(x, y, z)) -> ACTIVE(z)


Rules:


active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))


Strategy:

innermost




As we are in the innermost case, we can delete all 12 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 6
Size-Change Principle
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules


Dependency Pair:

ACTIVE(f(x, y, z)) -> ACTIVE(z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. ACTIVE(f(x, y, z)) -> ACTIVE(z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
f(x1, x2, x3) -> f(x1, x2, x3)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)
       →DP Problem 4
UsableRules


Dependency Pairs:

PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)


Rules:


active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))


Strategy:

innermost




As we are in the innermost case, we can delete all 12 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 7
Size-Change Principle
       →DP Problem 4
UsableRules


Dependency Pairs:

PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. PROPER(f(x, y, z)) -> PROPER(z)
  2. PROPER(f(x, y, z)) -> PROPER(y)
  3. PROPER(f(x, y, z)) -> PROPER(x)
and get the following Size-Change Graph(s):
{1, 2, 3} , {1, 2, 3}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3} , {1, 2, 3}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
f(x1, x2, x3) -> f(x1, x2, x3)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
Usable Rules (Innermost)


Dependency Pairs:

TOP(ok(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(proper(x))


Rules:


active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))


Strategy:

innermost




As we are in the innermost case, we can delete all 2 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
           →DP Problem 8
Narrowing Transformation


Dependency Pairs:

TOP(ok(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(proper(x))


Rules:


f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
f(x, y, mark(z)) -> mark(f(x, y, z))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
active(f(b, c, x)) -> mark(f(x, x, x))
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
proper(c) -> ok(c)
proper(b) -> ok(b)
proper(d) -> ok(d)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(ok(x)) -> TOP(active(x))
four new Dependency Pairs are created:

TOP(ok(f(x'', y', z'))) -> TOP(f(x'', y', active(z')))
TOP(ok(d)) -> TOP(m(b))
TOP(ok(d)) -> TOP(mark(c))
TOP(ok(f(b, c, x''))) -> TOP(mark(f(x'', x'', x'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
           →DP Problem 8
Nar
             ...
               →DP Problem 9
Narrowing Transformation


Dependency Pairs:

TOP(ok(d)) -> TOP(mark(c))
TOP(ok(f(b, c, x''))) -> TOP(mark(f(x'', x'', x'')))
TOP(ok(f(x'', y', z'))) -> TOP(f(x'', y', active(z')))
TOP(mark(x)) -> TOP(proper(x))


Rules:


f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
f(x, y, mark(z)) -> mark(f(x, y, z))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
active(f(b, c, x)) -> mark(f(x, x, x))
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
proper(c) -> ok(c)
proper(b) -> ok(b)
proper(d) -> ok(d)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(x)) -> TOP(proper(x))
four new Dependency Pairs are created:

TOP(mark(f(x'', y', z'))) -> TOP(f(proper(x''), proper(y'), proper(z')))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(b)) -> TOP(ok(b))
TOP(mark(d)) -> TOP(ok(d))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
           →DP Problem 8
Nar
             ...
               →DP Problem 10
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(f(x'', y', z'))) -> TOP(f(x'', y', active(z')))
TOP(mark(f(x'', y', z'))) -> TOP(f(proper(x''), proper(y'), proper(z')))
TOP(ok(f(b, c, x''))) -> TOP(mark(f(x'', x'', x'')))


Rules:


f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
f(x, y, mark(z)) -> mark(f(x, y, z))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
active(f(b, c, x)) -> mark(f(x, x, x))
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
proper(c) -> ok(c)
proper(b) -> ok(b)
proper(d) -> ok(d)


Strategy:

innermost



The Proof could not be continued due to a Timeout.
Innermost Termination of R could not be shown.
Duration:
1:00 minutes