R
↳Dependency Pair Analysis
NATSACTIVE -> ADDACTIVE(zerosactive)
NATSACTIVE -> ZEROSACTIVE
HDACTIVE(cons(x, y)) -> MARK(x)
TLACTIVE(cons(x, y)) -> MARK(y)
MARK(nats) -> NATSACTIVE
MARK(zeros) -> ZEROSACTIVE
MARK(incr(x)) -> INCRACTIVE(mark(x))
MARK(incr(x)) -> MARK(x)
MARK(add(x)) -> ADDACTIVE(mark(x))
MARK(add(x)) -> MARK(x)
MARK(hd(x)) -> HDACTIVE(mark(x))
MARK(hd(x)) -> MARK(x)
MARK(tl(x)) -> TLACTIVE(mark(x))
MARK(tl(x)) -> MARK(x)
ADDACTIVE(cons(x, y)) -> INCRACTIVE(cons(x, add(y)))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
MARK(tl(x)) -> MARK(x)
TLACTIVE(cons(x, y)) -> MARK(y)
MARK(tl(x)) -> TLACTIVE(mark(x))
MARK(hd(x)) -> MARK(x)
MARK(hd(x)) -> HDACTIVE(mark(x))
MARK(add(x)) -> MARK(x)
MARK(incr(x)) -> MARK(x)
HDACTIVE(cons(x, y)) -> MARK(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
zerosactive -> cons(0, zeros)
zerosactive -> zeros
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
innermost
MARK(tl(x)) -> MARK(x)
MARK(tl(x)) -> TLACTIVE(mark(x))
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
zerosactive -> cons(0, zeros)
zerosactive -> zeros
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
POL(zeros_active) = 0 POL(incr_active(x1)) = x1 POL(hd_active(x1)) = x1 POL(MARK(x1)) = x1 POL(TL_ACTIVE(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(tl(x1)) = 1 + x1 POL(HD_ACTIVE(x1)) = x1 POL(add(x1)) = x1 POL(add_active(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(hd(x1)) = x1 POL(nats) = 0 POL(s(x1)) = 0 POL(zeros) = 0 POL(nats_active) = 0 POL(tl_active(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
TLACTIVE(cons(x, y)) -> MARK(y)
MARK(hd(x)) -> MARK(x)
MARK(hd(x)) -> HDACTIVE(mark(x))
MARK(add(x)) -> MARK(x)
MARK(incr(x)) -> MARK(x)
HDACTIVE(cons(x, y)) -> MARK(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
zerosactive -> cons(0, zeros)
zerosactive -> zeros
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
MARK(hd(x)) -> MARK(x)
HDACTIVE(cons(x, y)) -> MARK(x)
MARK(hd(x)) -> HDACTIVE(mark(x))
MARK(add(x)) -> MARK(x)
MARK(incr(x)) -> MARK(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
zerosactive -> cons(0, zeros)
zerosactive -> zeros
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
innermost
MARK(hd(x)) -> MARK(x)
MARK(hd(x)) -> HDACTIVE(mark(x))
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
zerosactive -> cons(0, zeros)
zerosactive -> zeros
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
POL(zeros_active) = 0 POL(incr_active(x1)) = x1 POL(hd_active(x1)) = 1 + x1 POL(MARK(x1)) = x1 POL(incr(x1)) = x1 POL(mark(x1)) = x1 POL(tl(x1)) = x1 POL(HD_ACTIVE(x1)) = x1 POL(add(x1)) = x1 POL(add_active(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x1 + x2 POL(hd(x1)) = 1 + x1 POL(nats) = 0 POL(s(x1)) = 0 POL(zeros) = 0 POL(nats_active) = 0 POL(tl_active(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
HDACTIVE(cons(x, y)) -> MARK(x)
MARK(add(x)) -> MARK(x)
MARK(incr(x)) -> MARK(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
zerosactive -> cons(0, zeros)
zerosactive -> zeros
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Polynomial Ordering
MARK(add(x)) -> MARK(x)
MARK(incr(x)) -> MARK(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
zerosactive -> cons(0, zeros)
zerosactive -> zeros
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
innermost
MARK(add(x)) -> MARK(x)
POL(MARK(x1)) = x1 POL(incr(x1)) = x1 POL(add(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Polynomial Ordering
MARK(incr(x)) -> MARK(x)
natsactive -> addactive(zerosactive)
natsactive -> nats
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
zerosactive -> cons(0, zeros)
zerosactive -> zeros
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
innermost
MARK(incr(x)) -> MARK(x)
POL(MARK(x1)) = x1 POL(incr(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 7
↳Dependency Graph
natsactive -> addactive(zerosactive)
natsactive -> nats
hdactive(x) -> hd(x)
hdactive(cons(x, y)) -> mark(x)
zerosactive -> cons(0, zeros)
zerosactive -> zeros
tlactive(x) -> tl(x)
tlactive(cons(x, y)) -> mark(y)
incractive(cons(x, y)) -> cons(s(x), incr(y))
incractive(x) -> incr(x)
mark(nats) -> natsactive
mark(zeros) -> zerosactive
mark(incr(x)) -> incractive(mark(x))
mark(add(x)) -> addactive(mark(x))
mark(hd(x)) -> hdactive(mark(x))
mark(tl(x)) -> tlactive(mark(x))
mark(0) -> 0
mark(s(x)) -> s(x)
mark(cons(x, y)) -> cons(x, y)
addactive(cons(x, y)) -> incractive(cons(x, add(y)))
addactive(x) -> add(x)
innermost