R
↳Removing Redundant Rules for Innermost Termination
div(div(x, y), z) -> div(x, times(y, z))
R
↳RRRI
→TRS2
↳Dependency Pair Analysis
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(s(x), y) -> P(s(x))
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(x, s(y)) -> P(s(y))
TIMES(s(x), y) -> PLUS(y, times(x, y))
TIMES(s(x), y) -> TIMES(x, y)
DIV(x, y) -> QUOT(x, y, y)
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> DIV(x, s(z))
EQ(s(x), s(y)) -> EQ(x, y)
DIVIDES(y, x) -> EQ(x, times(div(x, y), y))
DIVIDES(y, x) -> TIMES(div(x, y), y)
DIVIDES(y, x) -> DIV(x, y)
PRIME(s(s(x))) -> PR(s(s(x)), s(x))
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
PR(x, s(s(y))) -> DIVIDES(s(s(y)), x)
IF(false, x, y) -> PR(x, y)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Modular Removal of Rules
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(s(x), y) -> PLUS(x, y)
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
p(s(x)) -> x
POL(PLUS(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = x1 POL(p(x1)) = x1
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
...
→DP Problem 6
↳Modular Removal of Rules
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(s(x), y) -> PLUS(x, y)
p(s(x)) -> x
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
p(s(x)) -> x
POL(PLUS(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1 POL(p(x1)) = x1
PLUS(s(x), y) -> PLUS(x, y)
p(s(x)) -> x
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(s(x), y) -> PLUS(p(s(x)), y)
none
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
...
→DP Problem 8
↳Non-Overlappingness Check
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
none
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
...
→DP Problem 9
↳Instantiation Transformation
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
none
innermost
one new Dependency Pair is created:
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(p(s(x'')), s(y'')) -> PLUS(p(s(x'')), p(s(y'')))
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Negative Polynomial Order
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
QUOT(x, 0, s(z)) -> DIV(x, s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
DIV(x, y) -> QUOT(x, y, y)
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
POL( QUOT(x1, ..., x3) ) = x1
POL( s(x1) ) = x1 + 1
POL( DIV(x1, x2) ) = x1
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Neg POLO
...
→DP Problem 10
↳Instantiation Transformation
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
QUOT(x, 0, s(z)) -> DIV(x, s(z))
DIV(x, y) -> QUOT(x, y, y)
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
one new Dependency Pair is created:
DIV(x, y) -> QUOT(x, y, y)
DIV(x'', s(z'')) -> QUOT(x'', s(z''), s(z''))
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
EQ(s(x), s(y)) -> EQ(x, y)
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
|
|
trivial
s(x1) -> s(x1)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
TIMES(s(x), y) -> TIMES(x, y)
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
|
|
trivial
s(x1) -> s(x1)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
IF(false, x, y) -> PR(x, y)
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
|
|
|
|
trivial
s(x1) -> s(x1)