Term Rewriting System R:
[x, n, h, t, m, pid, store]
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FSTSPLIT(s(n), cons(h, t)) -> FSTSPLIT(n, t)
SNDSPLIT(s(n), cons(h, t)) -> SNDSPLIT(n, t)
LEQ(s(n), s(m)) -> LEQ(n, m)
LENGTH(cons(h, t)) -> LENGTH(t)
APP(cons(h, t), x) -> APP(t, x)
MAPF(pid, cons(h, t)) -> APP(f(pid, h), mapf(pid, t))
MAPF(pid, cons(h, t)) -> MAPF(pid, t)
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
PROCESS(store, m) -> LEQ(m, length(store))
PROCESS(store, m) -> LENGTH(store)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, true) -> EMPTY(fstsplit(m, store))
IF1(store, m, true) -> FSTSPLIT(m, store)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
IF1(store, m, false) -> EMPTY(fstsplit(m, app(mapf(self, nil), store)))
IF1(store, m, false) -> FSTSPLIT(m, app(mapf(self, nil), store))
IF1(store, m, false) -> APP(mapf(self, nil), store)
IF1(store, m, false) -> MAPF(self, nil)
IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) -> APP(mapf(self, nil), sndsplit(m, store))
IF2(store, m, false) -> MAPF(self, nil)
IF2(store, m, false) -> SNDSPLIT(m, store)
IF3(store, m, false) -> PROCESS(sndsplit(m, app(mapf(self, nil), store)), m)
IF3(store, m, false) -> SNDSPLIT(m, app(mapf(self, nil), store))
IF3(store, m, false) -> APP(mapf(self, nil), store)
IF3(store, m, false) -> MAPF(self, nil)

Furthermore, R contains seven SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

FSTSPLIT(s(n), cons(h, t)) -> FSTSPLIT(n, t)


Rules:


fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)


Strategy:

innermost




As we are in the innermost case, we can delete all 22 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 8
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

FSTSPLIT(s(n), cons(h, t)) -> FSTSPLIT(n, t)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. FSTSPLIT(s(n), cons(h, t)) -> FSTSPLIT(n, t)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

SNDSPLIT(s(n), cons(h, t)) -> SNDSPLIT(n, t)


Rules:


fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)


Strategy:

innermost




As we are in the innermost case, we can delete all 22 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 9
Size-Change Principle
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

SNDSPLIT(s(n), cons(h, t)) -> SNDSPLIT(n, t)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. SNDSPLIT(s(n), cons(h, t)) -> SNDSPLIT(n, t)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

LEQ(s(n), s(m)) -> LEQ(n, m)


Rules:


fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)


Strategy:

innermost




As we are in the innermost case, we can delete all 22 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 10
Size-Change Principle
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

LEQ(s(n), s(m)) -> LEQ(n, m)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. LEQ(s(n), s(m)) -> LEQ(n, m)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
Usable Rules (Innermost)
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

LENGTH(cons(h, t)) -> LENGTH(t)


Rules:


fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)


Strategy:

innermost




As we are in the innermost case, we can delete all 22 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
           →DP Problem 11
Size-Change Principle
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

LENGTH(cons(h, t)) -> LENGTH(t)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. LENGTH(cons(h, t)) -> LENGTH(t)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
Usable Rules (Innermost)
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

APP(cons(h, t), x) -> APP(t, x)


Rules:


fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)


Strategy:

innermost




As we are in the innermost case, we can delete all 22 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
           →DP Problem 12
Size-Change Principle
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules


Dependency Pair:

APP(cons(h, t), x) -> APP(t, x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. APP(cons(h, t), x) -> APP(t, x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
Usable Rules (Innermost)
       →DP Problem 7
UsableRules


Dependency Pair:

MAPF(pid, cons(h, t)) -> MAPF(pid, t)


Rules:


fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)


Strategy:

innermost




As we are in the innermost case, we can delete all 22 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
           →DP Problem 13
Size-Change Principle
       →DP Problem 7
UsableRules


Dependency Pair:

MAPF(pid, cons(h, t)) -> MAPF(pid, t)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. MAPF(pid, cons(h, t)) -> MAPF(pid, t)
and get the following Size-Change Graph(s):
{1} , {1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
Usable Rules (Innermost)


Dependency Pairs:

IF3(store, m, false) -> PROCESS(sndsplit(m, app(mapf(self, nil), store)), m)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))


Rules:


fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)


Strategy:

innermost




As we are in the innermost case, we can delete all 6 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rewriting Transformation


Dependency Pairs:

IF3(store, m, false) -> PROCESS(sndsplit(m, app(mapf(self, nil), store)), m)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))


Rules:


mapf(pid, nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF3(store, m, false) -> PROCESS(sndsplit(m, app(mapf(self, nil), store)), m)
one new Dependency Pair is created:

IF3(store, m, false) -> PROCESS(sndsplit(m, app(nil, store)), m)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 15
Rewriting Transformation


Dependency Pairs:

IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF3(store, m, false) -> PROCESS(sndsplit(m, app(nil, store)), m)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))


Rules:


mapf(pid, nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
one new Dependency Pair is created:

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(nil, store))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 16
Rewriting Transformation


Dependency Pairs:

IF3(store, m, false) -> PROCESS(sndsplit(m, app(nil, store)), m)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)


Rules:


mapf(pid, nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)
one new Dependency Pair is created:

IF2(store, m, false) -> PROCESS(app(nil, sndsplit(m, store)), m)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 17
Rewriting Transformation


Dependency Pairs:

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF2(store, m, false) -> PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF3(store, m, false) -> PROCESS(sndsplit(m, app(nil, store)), m)


Rules:


mapf(pid, nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF3(store, m, false) -> PROCESS(sndsplit(m, app(nil, store)), m)
one new Dependency Pair is created:

IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 18
Rewriting Transformation


Dependency Pairs:

IF2(store, m, false) -> PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(nil, store))))


Rules:


mapf(pid, nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(nil, store))))
one new Dependency Pair is created:

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, store)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 19
Rewriting Transformation


Dependency Pairs:

IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, store)))
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF2(store, m, false) -> PROCESS(app(nil, sndsplit(m, store)), m)


Rules:


mapf(pid, nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF2(store, m, false) -> PROCESS(app(nil, sndsplit(m, store)), m)
one new Dependency Pair is created:

IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 20
Usable Rules (Innermost)


Dependency Pairs:

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)


Rules:


mapf(pid, nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




As we are in the innermost case, we can delete all 3 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 21
Narrowing Transformation


Dependency Pairs:

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, store)))
three new Dependency Pairs are created:

IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), empty(cons(h', fstsplit(n', t'))))
IF1(store', 0, false) -> IF3(store', 0, empty(nil))
IF1(nil, s(n'), false) -> IF3(nil, s(n'), empty(nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 22
Rewriting Transformation


Dependency Pairs:

IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), empty(cons(h', fstsplit(n', t'))))
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), empty(cons(h', fstsplit(n', t'))))
one new Dependency Pair is created:

IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 23
Narrowing Transformation


Dependency Pairs:

IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
three new Dependency Pairs are created:

IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), empty(cons(h', fstsplit(n', t'))))
IF1(store', 0, true) -> IF2(store', 0, empty(nil))
IF1(nil, s(n'), true) -> IF2(nil, s(n'), empty(nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 24
Rewriting Transformation


Dependency Pairs:

IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), empty(cons(h', fstsplit(n', t'))))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), empty(cons(h', fstsplit(n', t'))))
one new Dependency Pair is created:

IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 25
Narrowing Transformation


Dependency Pairs:

IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)
IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
three new Dependency Pairs are created:

PROCESS(store', 0) -> IF1(store', 0, true)
PROCESS(cons(h', t'), m) -> IF1(cons(h', t'), m, leq(m, s(length(t'))))
PROCESS(nil, m) -> IF1(nil, m, leq(m, 0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 26
Narrowing Transformation


Dependency Pairs:

IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(cons(h', t'), m) -> IF1(cons(h', t'), m, leq(m, s(length(t'))))
IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)
IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IF2(store, m, false) -> PROCESS(sndsplit(m, store), m)
three new Dependency Pairs are created:

IF2(store', 0, false) -> PROCESS(store', 0)
IF2(nil, s(n'), false) -> PROCESS(nil, s(n'))
IF2(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 27
Narrowing Transformation


Dependency Pairs:

IF2(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))
IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(cons(h', t'), m) -> IF1(cons(h', t'), m, leq(m, s(length(t'))))
IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IF3(store, m, false) -> PROCESS(sndsplit(m, store), m)
three new Dependency Pairs are created:

IF3(store', 0, false) -> PROCESS(store', 0)
IF3(nil, s(n'), false) -> PROCESS(nil, s(n'))
IF3(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 28
Instantiation Transformation


Dependency Pairs:

IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)
IF3(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(cons(h', t'), m) -> IF1(cons(h', t'), m, leq(m, s(length(t'))))
IF2(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

PROCESS(cons(h', t'), m) -> IF1(cons(h', t'), m, leq(m, s(length(t'))))
one new Dependency Pair is created:

PROCESS(cons(h'', t''), s(n''')) -> IF1(cons(h'', t''), s(n'''), leq(s(n'''), s(length(t''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 29
Rewriting Transformation


Dependency Pairs:

IF3(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(cons(h'', t''), s(n''')) -> IF1(cons(h'', t''), s(n'''), leq(s(n'''), s(length(t''))))
IF2(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))
IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

PROCESS(cons(h'', t''), s(n''')) -> IF1(cons(h'', t''), s(n'''), leq(s(n'''), s(length(t''))))
one new Dependency Pair is created:

PROCESS(cons(h'', t''), s(n''')) -> IF1(cons(h'', t''), s(n'''), leq(n''', length(t'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 30
Usable Rules (Innermost)


Dependency Pairs:

IF2(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))
IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(cons(h'', t''), s(n''')) -> IF1(cons(h'', t''), s(n'''), leq(n''', length(t'')))
IF3(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))


Rules:


empty(cons(h, t)) -> false
empty(nil) -> true
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




As we are in the innermost case, we can delete all 5 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 31
Negative Polynomial Order


Dependency Pairs:

IF2(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))
IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(cons(h'', t''), s(n''')) -> IF1(cons(h'', t''), s(n'''), leq(n''', length(t'')))
IF3(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))


Rules:


sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




The following Dependency Pairs can be strictly oriented using the given order.

IF2(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))
IF3(cons(h', t'), s(n'), false) -> PROCESS(sndsplit(n', t'), s(n'))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Used ordering:
Polynomial Order with Interpretation:

POL( IF2(x1, ..., x3) ) = x1

POL( cons(x1, x2) ) = x2 + 1

POL( PROCESS(x1, x2) ) = x1

POL( sndsplit(x1, x2) ) = x2

POL( IF3(x1, ..., x3) ) = x1

POL( IF1(x1, ..., x3) ) = x1

POL( nil ) = 0

POL( length(x1) ) = 0

POL( s(x1) ) = 0

POL( 0 ) = 0

POL( leq(x1, x2) ) = 0

POL( true ) = 0

POL( false ) = 0


This results in one new DP problem.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
       →DP Problem 6
UsableRules
       →DP Problem 7
UsableRules
           →DP Problem 14
Rw
             ...
               →DP Problem 32
Dependency Graph


Dependency Pairs:

IF1(cons(h', t'), s(n'), true) -> IF2(cons(h', t'), s(n'), false)
IF1(cons(h', t'), s(n'), false) -> IF3(cons(h', t'), s(n'), false)
PROCESS(cons(h'', t''), s(n''')) -> IF1(cons(h'', t''), s(n'''), leq(n''', length(t'')))


Rules:


sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
length(cons(h, t)) -> s(length(t))
length(nil) -> 0
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:29 minutes