R
↳Dependency Pair Analysis
FSTSPLIT(s(n), cons(h, t)) -> FSTSPLIT(n, t)
SNDSPLIT(s(n), cons(h, t)) -> SNDSPLIT(n, t)
LEQ(s(n), s(m)) -> LEQ(n, m)
LENGTH(cons(h, t)) -> LENGTH(t)
APP(cons(h, t), x) -> APP(t, x)
MAPF(pid, cons(h, t)) -> APP(f(pid, h), mapf(pid, t))
MAPF(pid, cons(h, t)) -> MAPF(pid, t)
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
PROCESS(store, m) -> LEQ(m, length(store))
PROCESS(store, m) -> LENGTH(store)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, true) -> EMPTY(fstsplit(m, store))
IF1(store, m, true) -> FSTSPLIT(m, store)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
IF1(store, m, false) -> EMPTY(fstsplit(m, app(mapf(self, nil), store)))
IF1(store, m, false) -> FSTSPLIT(m, app(mapf(self, nil), store))
IF1(store, m, false) -> APP(mapf(self, nil), store)
IF1(store, m, false) -> MAPF(self, nil)
IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) -> APP(mapf(self, nil), sndsplit(m, store))
IF2(store, m, false) -> MAPF(self, nil)
IF2(store, m, false) -> SNDSPLIT(m, store)
IF3(store, m, false) -> PROCESS(sndsplit(m, app(mapf(self, nil), store)), m)
IF3(store, m, false) -> SNDSPLIT(m, app(mapf(self, nil), store))
IF3(store, m, false) -> APP(mapf(self, nil), store)
IF3(store, m, false) -> MAPF(self, nil)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
FSTSPLIT(s(n), cons(h, t)) -> FSTSPLIT(n, t)
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
FSTSPLIT(s(n), cons(h, t)) -> FSTSPLIT(n, t)
POL(cons(x1, x2)) = 0 POL(FSTSPLIT(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
SNDSPLIT(s(n), cons(h, t)) -> SNDSPLIT(n, t)
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
SNDSPLIT(s(n), cons(h, t)) -> SNDSPLIT(n, t)
POL(SNDSPLIT(x1, x2)) = x1 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
LEQ(s(n), s(m)) -> LEQ(n, m)
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
LEQ(s(n), s(m)) -> LEQ(n, m)
POL(LEQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 10
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
LENGTH(cons(h, t)) -> LENGTH(t)
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
LENGTH(cons(h, t)) -> LENGTH(t)
POL(cons(x1, x2)) = 1 + x2 POL(LENGTH(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 11
↳Dependency Graph
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
APP(cons(h, t), x) -> APP(t, x)
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
APP(cons(h, t), x) -> APP(t, x)
POL(cons(x1, x2)) = 1 + x2 POL(APP(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 12
↳Dependency Graph
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polynomial Ordering
→DP Problem 7
↳Remaining
MAPF(pid, cons(h, t)) -> MAPF(pid, t)
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
MAPF(pid, cons(h, t)) -> MAPF(pid, t)
POL(MAP_F(x1, x2)) = x2 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 13
↳Dependency Graph
→DP Problem 7
↳Remaining
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Remaining Obligation(s)
IF3(store, m, false) -> PROCESS(sndsplit(m, app(mapf(self, nil), store)), m)
IF1(store, m, false) -> IF3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
IF2(store, m, false) -> PROCESS(app(mapf(self, nil), sndsplit(m, store)), m)
IF1(store, m, true) -> IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) -> IF1(store, m, leq(m, length(store)))
fstsplit(0, x) -> nil
fstsplit(s(n), nil) -> nil
fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
sndsplit(0, x) -> x
sndsplit(s(n), nil) -> nil
sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
empty(nil) -> true
empty(cons(h, t)) -> false
leq(0, m) -> true
leq(s(n), 0) -> false
leq(s(n), s(m)) -> leq(n, m)
length(nil) -> 0
length(cons(h, t)) -> s(length(t))
app(nil, x) -> x
app(cons(h, t), x) -> cons(h, app(t, x))
mapf(pid, nil) -> nil
mapf(pid, cons(h, t)) -> app(f(pid, h), mapf(pid, t))
process(store, m) -> if1(store, m, leq(m, length(store)))
if1(store, m, true) -> if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) -> if3(store, m, empty(fstsplit(m, app(mapf(self, nil), store))))
if2(store, m, false) -> process(app(mapf(self, nil), sndsplit(m, store)), m)
if3(store, m, false) -> process(sndsplit(m, app(mapf(self, nil), store)), m)
innermost