R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
MINUS(s(x), y) -> LE(s(x), y)
IFMINUS(false, s(x), y) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
LOG(s(s(x))) -> QUOT(x, s(s(0)))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
LE(s(x), s(y)) -> LE(x, y)
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
POL(LE(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
two new Dependency Pairs are created:
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Narrowing Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
IFMINUS(false, s(x), y) -> MINUS(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
three new Dependency Pairs are created:
MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))
MINUS(s(0), s(y''')) -> IFMINUS(true, s(0), s(y'''))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 9
↳Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
three new Dependency Pairs are created:
IFMINUS(false, s(x), y) -> MINUS(x, y)
IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))
IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 13
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
POL(IF_MINUS(x1, x2, x3)) = x2 POL(0) = 0 POL(false) = 0 POL(MINUS(x1, x2)) = x1 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 17
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 14
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))
POL(IF_MINUS(x1, x2, x3)) = x2 POL(0) = 0 POL(false) = 0 POL(MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 18
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 12
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 16
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)
IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)
POL(IF_MINUS(x1, x2, x3)) = x2 POL(0) = 0 POL(false) = 0 POL(MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 19
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳Nar
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
two new Dependency Pairs are created:
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(0), s(y'')) -> QUOT(0, s(y''))
QUOT(s(s(x'')), s(y'')) -> QUOT(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 20
↳Narrowing Transformation
→DP Problem 4
↳Nar
QUOT(s(s(x'')), s(y'')) -> QUOT(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x'')), s(y'')) -> QUOT(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
QUOT(s(s(x''')), s(0)) -> QUOT(ifminus(false, s(x'''), 0), s(0))
QUOT(s(s(x''')), s(s(y'))) -> QUOT(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 20
↳Nar
...
→DP Problem 21
↳Rewriting Transformation
→DP Problem 4
↳Nar
QUOT(s(s(x''')), s(0)) -> QUOT(ifminus(false, s(x'''), 0), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
QUOT(s(s(x''')), s(0)) -> QUOT(ifminus(false, s(x'''), 0), s(0))
QUOT(s(s(x''')), s(0)) -> QUOT(s(minus(x''', 0)), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 20
↳Nar
...
→DP Problem 23
↳Polynomial Ordering
→DP Problem 4
↳Nar
QUOT(s(s(x''')), s(0)) -> QUOT(s(minus(x''', 0)), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
QUOT(s(s(x''')), s(0)) -> QUOT(s(minus(x''', 0)), s(0))
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
POL(QUOT(x1, x2)) = 1 + x1 POL(0) = 0 POL(false) = 0 POL(minus(x1, x2)) = x1 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(if_minus(x1, x2, x3)) = x2 POL(le(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 20
↳Nar
...
→DP Problem 22
↳Polynomial Ordering
→DP Problem 4
↳Nar
QUOT(s(s(x''')), s(s(y'))) -> QUOT(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
QUOT(s(s(x''')), s(s(y'))) -> QUOT(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
POL(QUOT(x1, x2)) = x1 + x2 POL(0) = 0 POL(false) = 0 POL(minus(x1, x2)) = x1 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(if_minus(x1, x2, x3)) = x2 POL(le(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 20
↳Nar
...
→DP Problem 24
↳Dependency Graph
→DP Problem 4
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Narrowing Transformation
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
two new Dependency Pairs are created:
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
LOG(s(s(0))) -> LOG(s(0))
LOG(s(s(s(x'')))) -> LOG(s(s(quot(minus(x'', s(0)), s(s(0))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 26
↳Narrowing Transformation
LOG(s(s(s(x'')))) -> LOG(s(s(quot(minus(x'', s(0)), s(s(0))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
two new Dependency Pairs are created:
LOG(s(s(s(x'')))) -> LOG(s(s(quot(minus(x'', s(0)), s(s(0))))))
LOG(s(s(s(0)))) -> LOG(s(s(quot(0, s(s(0))))))
LOG(s(s(s(s(x'))))) -> LOG(s(s(quot(ifminus(le(s(x'), s(0)), s(x'), s(0)), s(s(0))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 26
↳Nar
...
→DP Problem 27
↳Rewriting Transformation
LOG(s(s(s(s(x'))))) -> LOG(s(s(quot(ifminus(le(s(x'), s(0)), s(x'), s(0)), s(s(0))))))
LOG(s(s(s(0)))) -> LOG(s(s(quot(0, s(s(0))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
LOG(s(s(s(0)))) -> LOG(s(s(quot(0, s(s(0))))))
LOG(s(s(s(0)))) -> LOG(s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 26
↳Nar
...
→DP Problem 28
↳Rewriting Transformation
LOG(s(s(s(s(x'))))) -> LOG(s(s(quot(ifminus(le(s(x'), s(0)), s(x'), s(0)), s(s(0))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
one new Dependency Pair is created:
LOG(s(s(s(s(x'))))) -> LOG(s(s(quot(ifminus(le(s(x'), s(0)), s(x'), s(0)), s(s(0))))))
LOG(s(s(s(s(x'))))) -> LOG(s(s(quot(ifminus(le(x', 0), s(x'), s(0)), s(s(0))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 26
↳Nar
...
→DP Problem 29
↳Polynomial Ordering
LOG(s(s(s(s(x'))))) -> LOG(s(s(quot(ifminus(le(x', 0), s(x'), s(0)), s(s(0))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
LOG(s(s(s(s(x'))))) -> LOG(s(s(quot(ifminus(le(x', 0), s(x'), s(0)), s(s(0))))))
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
POL(0) = 0 POL(false) = 0 POL(minus(x1, x2)) = x1 POL(quot(x1, x2)) = x1 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(if_minus(x1, x2, x3)) = x2 POL(le(x1, x2)) = 0 POL(LOG(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 26
↳Nar
...
→DP Problem 30
↳Dependency Graph
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost