R
↳Dependency Pair Analysis
MINUS(x, s(y)) -> PRED(minus(x, y))
MINUS(x, s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
LOG(s(s(x))) -> QUOT(x, s(s(0)))
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
MINUS(x, s(y)) -> MINUS(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
MINUS(x, s(y)) -> MINUS(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳Negative Polynomial Order
→DP Problem 3
↳UsableRules
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
innermost
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
POL( QUOT(x1, x2) ) = x1
POL( s(x1) ) = x1 + 1
POL( minus(x1, x2) ) = x1
POL( pred(x1) ) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳Neg POLO
...
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳UsableRules
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 7
↳Negative Polynomial Order
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
innermost
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
POL( LOG(x1) ) = x1
POL( s(x1) ) = x1 + 1
POL( quot(x1, x2) ) = x1
POL( 0 ) = 0
POL( minus(x1, x2) ) = x1
POL( pred(x1) ) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 7
↳Neg POLO
...
→DP Problem 8
↳Dependency Graph
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
innermost