Term Rewriting System R:
[y, x]
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
MINUS(s(x), y) -> LE(s(x), y)
IFMINUS(false, s(x), y) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
IFGCD(true, s(x), s(y)) -> MINUS(x, y)
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(false, s(x), s(y)) -> MINUS(y, x)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(x), s(y)) -> LE(x, y)
one new Dependency Pair is created:

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
one new Dependency Pair is created:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
two new Dependency Pairs are created:

MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Narrowing Transformation
       →DP Problem 3
Nar


Dependency Pairs:

MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
IFMINUS(false, s(x), y) -> MINUS(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))
three new Dependency Pairs are created:

MINUS(s(0), s(y''')) -> IFMINUS(true, s(0), s(y'''))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 8
Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(x), y) -> MINUS(x, y)
three new Dependency Pairs are created:

IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))

The transformation is resulting in three new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 9
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 12
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 10
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 13
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 17
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 11
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
one new Dependency Pair is created:

IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 14
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
one new Dependency Pair is created:

MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 15
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)
IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 18
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Narrowing Transformation


Dependency Pairs:

IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
three new Dependency Pairs are created:

GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Narrowing Transformation


Dependency Pairs:

GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
two new Dependency Pairs are created:

IFGCD(true, s(0), s(y'')) -> GCD(0, s(y''))
IFGCD(true, s(s(x'')), s(y'')) -> GCD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 20
Narrowing Transformation


Dependency Pairs:

GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(true, s(s(x'')), s(y'')) -> GCD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
two new Dependency Pairs are created:

IFGCD(false, s(x'), s(0)) -> GCD(0, s(x'))
IFGCD(false, s(x0), s(s(x''))) -> GCD(ifminus(le(s(x''), x0), s(x''), x0), s(x0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 21
Narrowing Transformation


Dependency Pairs:

GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
IFGCD(true, s(s(x'')), s(y'')) -> GCD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, s(x0), s(s(x''))) -> GCD(ifminus(le(s(x''), x0), s(x''), x0), s(x0))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
three new Dependency Pairs are created:

GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 22
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
IFGCD(false, s(x0), s(s(x''))) -> GCD(ifminus(le(s(x''), x0), s(x''), x0), s(x0))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(true, s(s(x'')), s(y'')) -> GCD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(x'')), s(y'')) -> GCD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
two new Dependency Pairs are created:

IFGCD(true, s(s(x''')), s(0)) -> GCD(ifminus(false, s(x'''), 0), s(0))
IFGCD(true, s(s(x''')), s(s(y'))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 23
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(x''')), s(0)) -> GCD(ifminus(false, s(x'''), 0), s(0))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(x''')), s(0)) -> GCD(ifminus(false, s(x'''), 0), s(0))
one new Dependency Pair is created:

IFGCD(true, s(s(x''')), s(0)) -> GCD(s(minus(x''', 0)), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 25
Forward Instantiation Transformation


Dependency Pairs:

IFGCD(true, s(s(x''')), s(0)) -> GCD(s(minus(x''', 0)), s(0))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
one new Dependency Pair is created:

GCD(s(s(x''''')), s(0)) -> IFGCD(true, s(s(x''''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 27
Narrowing Transformation


Dependency Pairs:

GCD(s(s(x''''')), s(0)) -> IFGCD(true, s(s(x''''')), s(0))
IFGCD(true, s(s(x''')), s(0)) -> GCD(s(minus(x''', 0)), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(x''')), s(0)) -> GCD(s(minus(x''', 0)), s(0))
two new Dependency Pairs are created:

IFGCD(true, s(s(0)), s(0)) -> GCD(s(0), s(0))
IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(ifminus(le(s(x'), 0), s(x'), 0)), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 29
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(ifminus(le(s(x'), 0), s(x'), 0)), s(0))
GCD(s(s(x''''')), s(0)) -> IFGCD(true, s(s(x''''')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(ifminus(le(s(x'), 0), s(x'), 0)), s(0))
one new Dependency Pair is created:

IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(ifminus(false, s(x'), 0)), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 31
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(ifminus(false, s(x'), 0)), s(0))
GCD(s(s(x''''')), s(0)) -> IFGCD(true, s(s(x''''')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(ifminus(false, s(x'), 0)), s(0))
one new Dependency Pair is created:

IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(s(minus(x', 0))), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 34
Forward Instantiation Transformation


Dependency Pairs:

IFGCD(true, s(s(s(x'))), s(0)) -> GCD(s(s(minus(x', 0))), s(0))
GCD(s(s(x''''')), s(0)) -> IFGCD(true, s(s(x''''')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(x''''')), s(0)) -> IFGCD(true, s(s(x''''')), s(0))
one new Dependency Pair is created:

GCD(s(s(s(x'''))), s(0)) -> IFGCD(true, s(s(s(x'''))), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 61
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 24
Narrowing Transformation


Dependency Pairs:

GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
IFGCD(true, s(s(x''')), s(s(y'))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(false, s(x0), s(s(x''))) -> GCD(ifminus(le(s(x''), x0), s(x''), x0), s(x0))
GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(false, s(x0), s(s(x''))) -> GCD(ifminus(le(s(x''), x0), s(x''), x0), s(x0))
two new Dependency Pairs are created:

IFGCD(false, s(0), s(s(x'''))) -> GCD(ifminus(false, s(x'''), 0), s(0))
IFGCD(false, s(s(y')), s(s(x'''))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 26
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
IFGCD(true, s(s(x''')), s(s(y'))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
IFGCD(false, s(s(y')), s(s(x'''))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(s(y'))), s(s(s(x')))) -> IFGCD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
three new Dependency Pairs are created:

GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))
GCD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFGCD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 28
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFGCD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
IFGCD(false, s(s(y')), s(s(x'''))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
IFGCD(true, s(s(x''')), s(s(y'))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(x''')), s(s(y'))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
three new Dependency Pairs are created:

IFGCD(true, s(s(0)), s(s(y''))) -> GCD(ifminus(true, s(0), s(y'')), s(s(y'')))
IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(ifminus(false, s(s(x')), s(0)), s(s(0)))
IFGCD(true, s(s(s(x'))), s(s(s(y'')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 30
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(ifminus(false, s(s(x')), s(0)), s(s(0)))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))
IFGCD(true, s(s(s(x'))), s(s(s(y'')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
IFGCD(true, s(s(0)), s(s(y''))) -> GCD(ifminus(true, s(0), s(y'')), s(s(y'')))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
IFGCD(false, s(s(y')), s(s(x'''))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
GCD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFGCD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(0)), s(s(y''))) -> GCD(ifminus(true, s(0), s(y'')), s(s(y'')))
one new Dependency Pair is created:

IFGCD(true, s(s(0)), s(s(y''))) -> GCD(0, s(s(y'')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 32
Rewriting Transformation


Dependency Pairs:

GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(ifminus(false, s(s(x')), s(0)), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(ifminus(false, s(s(x')), s(0)), s(s(0)))
one new Dependency Pair is created:

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(minus(s(x'), s(0))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 35
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(minus(s(x'), s(0))), s(s(0)))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(minus(s(x'), s(0))), s(s(0)))
one new Dependency Pair is created:

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(ifminus(le(s(x'), s(0)), s(x'), s(0))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 38
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(ifminus(le(s(x'), s(0)), s(x'), s(0))), s(s(0)))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(ifminus(le(s(x'), s(0)), s(x'), s(0))), s(s(0)))
one new Dependency Pair is created:

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(ifminus(le(x', 0), s(x'), s(0))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 40
Forward Instantiation Transformation


Dependency Pairs:

IFGCD(true, s(s(s(x'))), s(s(0))) -> GCD(s(ifminus(le(x', 0), s(x'), s(0))), s(s(0)))
GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(y''')), s(s(0))) -> IFGCD(true, s(s(y''')), s(s(0)))
one new Dependency Pair is created:

GCD(s(s(s(x'''))), s(s(0))) -> IFGCD(true, s(s(s(x'''))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 61
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 33
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFGCD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))
IFGCD(true, s(s(s(x'))), s(s(s(y'')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
GCD(s(s(0)), s(s(s(x')))) -> IFGCD(false, s(s(0)), s(s(s(x'))))
IFGCD(false, s(s(y')), s(s(x'''))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(false, s(s(y')), s(s(x'''))) -> GCD(ifminus(le(x''', y'), s(x'''), s(y')), s(s(y')))
three new Dependency Pairs are created:

IFGCD(false, s(s(y'')), s(s(0))) -> GCD(ifminus(true, s(0), s(y'')), s(s(y'')))
IFGCD(false, s(s(0)), s(s(s(x')))) -> GCD(ifminus(false, s(s(x')), s(0)), s(s(0)))
IFGCD(false, s(s(s(y''))), s(s(s(x')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 36
Narrowing Transformation


Dependency Pairs:

IFGCD(false, s(s(s(y''))), s(s(s(x')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
IFGCD(true, s(s(s(x'))), s(s(s(y'')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
GCD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFGCD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFGCD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))
three new Dependency Pairs are created:

GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
GCD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFGCD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 39
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFGCD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))
IFGCD(true, s(s(s(x'))), s(s(s(y'')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
IFGCD(false, s(s(s(y''))), s(s(s(x')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(x'))), s(s(s(y'')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
three new Dependency Pairs are created:

IFGCD(true, s(s(s(0))), s(s(s(y''')))) -> GCD(ifminus(true, s(s(0)), s(s(y'''))), s(s(s(y'''))))
IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(ifminus(false, s(s(s(x''))), s(s(0))), s(s(s(0))))
IFGCD(true, s(s(s(s(x'')))), s(s(s(s(y'))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 41
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(ifminus(false, s(s(s(x''))), s(s(0))), s(s(s(0))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
IFGCD(true, s(s(s(s(x'')))), s(s(s(s(y'))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))
IFGCD(true, s(s(s(0))), s(s(s(y''')))) -> GCD(ifminus(true, s(s(0)), s(s(y'''))), s(s(s(y'''))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
IFGCD(false, s(s(s(y''))), s(s(s(x')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
GCD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFGCD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(0))), s(s(s(y''')))) -> GCD(ifminus(true, s(s(0)), s(s(y'''))), s(s(s(y'''))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(0))), s(s(s(y''')))) -> GCD(0, s(s(s(y'''))))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 43
Rewriting Transformation


Dependency Pairs:

GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(ifminus(false, s(s(s(x''))), s(s(0))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(ifminus(false, s(s(s(x''))), s(s(0))), s(s(s(0))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(minus(s(s(x'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 45
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(minus(s(s(x'')), s(s(0)))), s(s(s(0))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(minus(s(s(x'')), s(s(0)))), s(s(s(0))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(s(s(x'')), s(s(0))), s(s(x'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 47
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(s(s(x'')), s(s(0))), s(s(x'')), s(s(0)))), s(s(s(0))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(s(s(x'')), s(s(0))), s(s(x'')), s(s(0)))), s(s(s(0))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(s(x''), s(0)), s(s(x'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 49
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(s(x''), s(0)), s(s(x'')), s(s(0)))), s(s(s(0))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(s(x''), s(0)), s(s(x'')), s(s(0)))), s(s(s(0))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(x'', 0), s(s(x'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 51
Forward Instantiation Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(x'')))), s(s(s(0)))) -> GCD(s(ifminus(le(x'', 0), s(s(x'')), s(s(0)))), s(s(s(0))))
GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(s(y''))), s(s(s(0)))) -> IFGCD(true, s(s(s(y''))), s(s(s(0))))
one new Dependency Pair is created:

GCD(s(s(s(s(x'''')))), s(s(s(0)))) -> IFGCD(true, s(s(s(s(x'''')))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 61
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 44
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFGCD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))
IFGCD(true, s(s(s(s(x'')))), s(s(s(s(y'))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
GCD(s(s(s(0))), s(s(s(s(x''))))) -> IFGCD(false, s(s(s(0))), s(s(s(s(x'')))))
IFGCD(false, s(s(s(y''))), s(s(s(x')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(false, s(s(s(y''))), s(s(s(x')))) -> GCD(ifminus(le(x', y''), s(s(x')), s(s(y''))), s(s(s(y''))))
three new Dependency Pairs are created:

IFGCD(false, s(s(s(y'''))), s(s(s(0)))) -> GCD(ifminus(true, s(s(0)), s(s(y'''))), s(s(s(y'''))))
IFGCD(false, s(s(s(0))), s(s(s(s(x''))))) -> GCD(ifminus(false, s(s(s(x''))), s(s(0))), s(s(s(0))))
IFGCD(false, s(s(s(s(y')))), s(s(s(s(x''))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 46
Narrowing Transformation


Dependency Pairs:

IFGCD(false, s(s(s(s(y')))), s(s(s(s(x''))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
IFGCD(true, s(s(s(s(x'')))), s(s(s(s(y'))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
GCD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFGCD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFGCD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))
three new Dependency Pairs are created:

GCD(s(s(s(s(s(y''))))), s(s(s(s(s(0)))))) -> IFGCD(true, s(s(s(s(s(y''))))), s(s(s(s(s(0))))))
GCD(s(s(s(s(s(0))))), s(s(s(s(s(s(x''))))))) -> IFGCD(false, s(s(s(s(s(0))))), s(s(s(s(s(s(x'')))))))
GCD(s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x''))))))) -> IFGCD(le(x'', y''), s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x'')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 48
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x''))))))) -> IFGCD(le(x'', y''), s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x'')))))))
GCD(s(s(s(s(s(0))))), s(s(s(s(s(s(x''))))))) -> IFGCD(false, s(s(s(s(s(0))))), s(s(s(s(s(s(x'')))))))
GCD(s(s(s(s(s(y''))))), s(s(s(s(s(0)))))) -> IFGCD(true, s(s(s(s(s(y''))))), s(s(s(s(s(0))))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
IFGCD(true, s(s(s(s(x'')))), s(s(s(s(y'))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
IFGCD(false, s(s(s(s(y')))), s(s(s(s(x''))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(x'')))), s(s(s(s(y'))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
three new Dependency Pairs are created:

IFGCD(true, s(s(s(s(0)))), s(s(s(s(y''))))) -> GCD(ifminus(true, s(s(s(0))), s(s(s(y'')))), s(s(s(s(y'')))))
IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(ifminus(false, s(s(s(s(x')))), s(s(s(0)))), s(s(s(s(0)))))
IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(s(y'')))))) -> GCD(ifminus(le(x', y''), s(s(s(s(x')))), s(s(s(s(y''))))), s(s(s(s(s(y''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 50
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(ifminus(false, s(s(s(s(x')))), s(s(s(0)))), s(s(s(s(0)))))
GCD(s(s(s(s(s(0))))), s(s(s(s(s(s(x''))))))) -> IFGCD(false, s(s(s(s(s(0))))), s(s(s(s(s(s(x'')))))))
IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(s(y'')))))) -> GCD(ifminus(le(x', y''), s(s(s(s(x')))), s(s(s(s(y''))))), s(s(s(s(s(y''))))))
GCD(s(s(s(s(s(y''))))), s(s(s(s(s(0)))))) -> IFGCD(true, s(s(s(s(s(y''))))), s(s(s(s(s(0))))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
IFGCD(true, s(s(s(s(0)))), s(s(s(s(y''))))) -> GCD(ifminus(true, s(s(s(0))), s(s(s(y'')))), s(s(s(s(y'')))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
IFGCD(false, s(s(s(s(y')))), s(s(s(s(x''))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
GCD(s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x''))))))) -> IFGCD(le(x'', y''), s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x'')))))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(0)))), s(s(s(s(y''))))) -> GCD(ifminus(true, s(s(s(0))), s(s(s(y'')))), s(s(s(s(y'')))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(0)))), s(s(s(s(y''))))) -> GCD(0, s(s(s(s(y'')))))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 52
Rewriting Transformation


Dependency Pairs:

GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(ifminus(false, s(s(s(s(x')))), s(s(s(0)))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(ifminus(false, s(s(s(s(x')))), s(s(s(0)))), s(s(s(s(0)))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(minus(s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 55
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(minus(s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(minus(s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(s(s(x'))), s(s(s(0)))), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 57
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(s(s(x'))), s(s(s(0)))), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(s(s(x'))), s(s(s(0)))), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(s(x')), s(s(0))), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 58
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(s(x')), s(s(0))), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(s(x')), s(s(0))), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(x'), s(0)), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 59
Rewriting Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(x'), s(0)), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(s(x'), s(0)), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(x', 0), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 60
Forward Instantiation Transformation


Dependency Pairs:

IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(0))))) -> GCD(s(ifminus(le(x', 0), s(s(s(x'))), s(s(s(0))))), s(s(s(s(0)))))
GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

GCD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
one new Dependency Pair is created:

GCD(s(s(s(s(s(x'''))))), s(s(s(s(0))))) -> IFGCD(true, s(s(s(s(s(x'''))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 61
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 53
Narrowing Transformation


Dependency Pairs:

GCD(s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x''))))))) -> IFGCD(le(x'', y''), s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x'')))))))
IFGCD(true, s(s(s(s(s(x'))))), s(s(s(s(s(y'')))))) -> GCD(ifminus(le(x', y''), s(s(s(s(x')))), s(s(s(s(y''))))), s(s(s(s(s(y''))))))
GCD(s(s(s(s(s(y''))))), s(s(s(s(s(0)))))) -> IFGCD(true, s(s(s(s(s(y''))))), s(s(s(s(s(0))))))
GCD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
IFGCD(false, s(s(s(s(y')))), s(s(s(s(x''))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
GCD(s(s(s(s(s(0))))), s(s(s(s(s(s(x''))))))) -> IFGCD(false, s(s(s(s(s(0))))), s(s(s(s(s(s(x'')))))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFGCD(false, s(s(s(s(y')))), s(s(s(s(x''))))) -> GCD(ifminus(le(x'', y'), s(s(s(x''))), s(s(s(y')))), s(s(s(s(y')))))
three new Dependency Pairs are created:

IFGCD(false, s(s(s(s(y'')))), s(s(s(s(0))))) -> GCD(ifminus(true, s(s(s(0))), s(s(s(y'')))), s(s(s(s(y'')))))
IFGCD(false, s(s(s(s(0)))), s(s(s(s(s(x')))))) -> GCD(ifminus(false, s(s(s(s(x')))), s(s(s(0)))), s(s(s(s(0)))))
IFGCD(false, s(s(s(s(s(y''))))), s(s(s(s(s(x')))))) -> GCD(ifminus(le(x', y''), s(s(s(s(x')))), s(s(s(s(y''))))), s(s(s(s(s(y''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 61
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:04 minutes