Term Rewriting System R:
[y, x]
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
MINUS(s(x), y) -> LE(s(x), y)
IFMINUS(false, s(x), y) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
IFGCD(true, s(x), s(y)) -> MINUS(x, y)
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(false, s(x), s(y)) -> MINUS(y, x)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(x), s(y)) -> LE(x, y)
one new Dependency Pair is created:

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
one new Dependency Pair is created:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
two new Dependency Pairs are created:

MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
IFMINUS(false, s(x), y) -> MINUS(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x''), s(y'')) -> IFMINUS(le(x'', y''), s(x''), s(y''))
three new Dependency Pairs are created:

MINUS(s(0), s(y''')) -> IFMINUS(true, s(0), s(y'''))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 8
Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(x), y) -> MINUS(x, y)
three new Dependency Pairs are created:

IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))

The transformation is resulting in three new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 9
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(x'0')), s(s(y'''))) -> MINUS(s(x'0'), s(s(y''')))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 12
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(x')), s(s(y'))) -> IFMINUS(le(x', y'), s(s(x')), s(s(y')))
three new Dependency Pairs are created:

MINUS(s(s(0)), s(s(y''))) -> IFMINUS(true, s(s(0)), s(s(y'')))
MINUS(s(s(s(x''))), s(s(0))) -> IFMINUS(false, s(s(s(x''))), s(s(0)))
MINUS(s(s(s(x''))), s(s(s(y'')))) -> IFMINUS(le(x'', y''), s(s(s(x''))), s(s(s(y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 18
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(x''))), s(s(s(y'')))) -> IFMINUS(le(x'', y''), s(s(s(x''))), s(s(s(y''))))
MINUS(s(s(s(x''))), s(s(0))) -> IFMINUS(false, s(s(s(x''))), s(s(0)))
IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(x''))), s(s(s(y'')))) -> IFMINUS(le(x'', y''), s(s(s(x''))), s(s(s(y''))))
three new Dependency Pairs are created:

MINUS(s(s(s(0))), s(s(s(y''')))) -> IFMINUS(true, s(s(s(0))), s(s(s(y'''))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(x')))), s(s(s(0))))
MINUS(s(s(s(s(x')))), s(s(s(s(y'))))) -> IFMINUS(le(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 19
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(x')))), s(s(s(s(y'))))) -> IFMINUS(le(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(x')))), s(s(s(0))))
IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
MINUS(s(s(s(x''))), s(s(0))) -> IFMINUS(false, s(s(s(x''))), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(s(x')))), s(s(s(s(y'))))) -> IFMINUS(le(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
three new Dependency Pairs are created:

MINUS(s(s(s(s(0)))), s(s(s(s(y''))))) -> IFMINUS(true, s(s(s(s(0)))), s(s(s(s(y'')))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IFMINUS(le(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 20
Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IFMINUS(le(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))
MINUS(s(s(s(x''))), s(s(0))) -> IFMINUS(false, s(s(s(x''))), s(s(0)))
IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(x')))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(x'''))), s(s(y''''))) -> MINUS(s(s(x''')), s(s(y'''')))
four new Dependency Pairs are created:

IFMINUS(false, s(s(s(x'''''))), s(s(0))) -> MINUS(s(s(x''''')), s(s(0)))
IFMINUS(false, s(s(s(s(x'''')))), s(s(s(0)))) -> MINUS(s(s(s(x''''))), s(s(s(0))))
IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(0)))))
IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''')))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(s(y'''''))))))

The transformation is resulting in four new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 21
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''')))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(s(y'''''))))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IFMINUS(le(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''')))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(s(y'''''))))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(s(y'''''')))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(s(y''''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 22
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(0)))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 26
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(0)))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 34
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 23
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(x'''''))), s(s(0))) -> MINUS(s(s(x''''')), s(s(0)))
MINUS(s(s(s(x''))), s(s(0))) -> IFMINUS(false, s(s(s(x''))), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(x'''''))), s(s(0))) -> MINUS(s(s(x''''')), s(s(0)))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 27
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))
MINUS(s(s(s(x''))), s(s(0))) -> IFMINUS(false, s(s(s(x''))), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(x''))), s(s(0))) -> IFMINUS(false, s(s(s(x''))), s(s(0)))
one new Dependency Pair is created:

MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(x'''''')))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 29
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(x'''''')))), s(s(0)))
IFMINUS(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 31
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))
MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(x'''''')))), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(x'''''')))), s(s(0)))
one new Dependency Pair is created:

MINUS(s(s(s(s(s(x''''''''''))))), s(s(0))) -> IFMINUS(false, s(s(s(s(s(x''''''''''))))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 33
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(s(x''''''''''))))), s(s(0))) -> IFMINUS(false, s(s(s(s(s(x''''''''''))))), s(s(0)))
IFMINUS(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 36
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(s(s(s(x''''''''''))))), s(s(0))) -> IFMINUS(false, s(s(s(s(s(x''''''''''))))), s(s(0)))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 24
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(x'''')))), s(s(s(0)))) -> MINUS(s(s(s(x''''))), s(s(s(0))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(x')))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(x'''')))), s(s(s(0)))) -> MINUS(s(s(s(x''''))), s(s(s(0))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(x'''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x''')))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 28
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(x'''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x''')))), s(s(s(0))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(x')))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(x')))), s(s(s(0))))
one new Dependency Pair is created:

MINUS(s(s(s(s(s(x'''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 30
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(s(x'''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(0))))
IFMINUS(false, s(s(s(s(s(x'''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x''')))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(s(x'''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x''')))), s(s(s(0))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(s(x''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(x'''''''))))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 32
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(s(x''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(x'''''''))))), s(s(s(0))))
MINUS(s(s(s(s(s(x'''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(s(s(s(x''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(x'''''''))))), s(s(s(0))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 35
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(s(s(s(x'''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(x'''''))))), s(s(s(0))))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 10
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(x''')), s(0)) -> MINUS(s(x'''), s(0))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 13
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))
MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(x''''))), s(0)) -> MINUS(s(s(x'''')), s(0))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(x')), s(0)) -> IFMINUS(false, s(s(x')), s(0))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 11
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(x'), 0) -> MINUS(x', 0)
one new Dependency Pair is created:

IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 14
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)
MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x''), 0) -> IFMINUS(false, s(x''), 0)
one new Dependency Pair is created:

MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 15
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)
IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(x'''')), 0) -> MINUS(s(x''''), 0)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 17
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(x'''''')), 0) -> IFMINUS(false, s(s(x'''''')), 0)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:03 minutes