R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(x, s(y)) -> PRED(minus(x, y))
MINUS(x, s(y)) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
IFGCD(true, s(x), s(y)) -> MINUS(x, y)
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(false, s(x), s(y)) -> MINUS(y, x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
LE(s(x), s(y)) -> LE(x, y)
trivial
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
MINUS(x, s(y)) -> MINUS(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
MINUS(x, s(y)) -> MINUS(x, y)
trivial
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Narrowing Transformation
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
three new Dependency Pairs are created:
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Narrowing Transformation
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
two new Dependency Pairs are created:
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
IFGCD(true, s(x''), s(0)) -> GCD(x'', s(0))
IFGCD(true, s(x''), s(s(y''))) -> GCD(pred(minus(x'', y'')), s(s(y'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Forward Instantiation Transformation
IFGCD(true, s(x''), s(0)) -> GCD(x'', s(0))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
one new Dependency Pair is created:
IFGCD(true, s(x''), s(0)) -> GCD(x'', s(0))
IFGCD(true, s(s(x'''')), s(0)) -> GCD(s(x''''), s(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Forward Instantiation Transformation
IFGCD(true, s(s(x'''')), s(0)) -> GCD(s(x''''), s(0))
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
one new Dependency Pair is created:
GCD(s(x'), s(0)) -> IFGCD(true, s(x'), s(0))
GCD(s(s(x'''''')), s(0)) -> IFGCD(true, s(s(x'''''')), s(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Argument Filtering and Ordering
GCD(s(s(x'''''')), s(0)) -> IFGCD(true, s(s(x'''''')), s(0))
IFGCD(true, s(s(x'''')), s(0)) -> GCD(s(x''''), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
GCD(s(s(x'''''')), s(0)) -> IFGCD(true, s(s(x'''''')), s(0))
IFGCD(true, s(s(x'''')), s(0)) -> GCD(s(x''''), s(0))
{true, s} > GCD > IFGCD > 0
IFGCD(x1, x2, x3) -> IFGCD(x1, x2, x3)
GCD(x1, x2) -> GCD(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Dependency Graph
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Narrowing Transformation
IFGCD(true, s(x''), s(s(y''))) -> GCD(pred(minus(x'', y'')), s(s(y'')))
GCD(s(0), s(s(x''))) -> IFGCD(false, s(0), s(s(x'')))
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
two new Dependency Pairs are created:
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(false, s(0), s(y')) -> GCD(y', s(0))
IFGCD(false, s(s(y'')), s(y0)) -> GCD(pred(minus(y0, y'')), s(s(y'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Instantiation Transformation
IFGCD(false, s(s(y'')), s(y0)) -> GCD(pred(minus(y0, y'')), s(s(y'')))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
IFGCD(true, s(x''), s(s(y''))) -> GCD(pred(minus(x'', y'')), s(s(y'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
one new Dependency Pair is created:
IFGCD(true, s(x''), s(s(y''))) -> GCD(pred(minus(x'', y'')), s(s(y'')))
IFGCD(true, s(s(y'''')), s(s(y''0))) -> GCD(pred(minus(s(y''''), y''0)), s(s(y''0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Instantiation Transformation
IFGCD(true, s(s(y'''')), s(s(y''0))) -> GCD(pred(minus(s(y''''), y''0)), s(s(y''0)))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
IFGCD(false, s(s(y'')), s(y0)) -> GCD(pred(minus(y0, y'')), s(s(y'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost
one new Dependency Pair is created:
IFGCD(false, s(s(y'')), s(y0)) -> GCD(pred(minus(y0, y'')), s(s(y'')))
IFGCD(false, s(s(y'''')), s(s(x''''))) -> GCD(pred(minus(s(x''''), y'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Remaining Obligation(s)
IFGCD(false, s(s(y'''')), s(s(x''''))) -> GCD(pred(minus(s(x''''), y'''')), s(s(y'''')))
GCD(s(s(y'')), s(s(x''))) -> IFGCD(le(x'', y''), s(s(y'')), s(s(x'')))
IFGCD(true, s(s(y'''')), s(s(y''0))) -> GCD(pred(minus(s(y''''), y''0)), s(s(y''0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
innermost