Term Rewriting System R:
[y, x]
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(x, s(y)) -> PRED(minus(x, y))
MINUS(x, s(y)) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
IFGCD(true, s(x), s(y)) -> MINUS(x, y)
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(false, s(x), s(y)) -> MINUS(y, x)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(x, s(y)) -> MINUS(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(x, s(y)) -> MINUS(x, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:02 minutes