R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
MINUS(s(x), y) -> LE(s(x), y)
IFMINUS(false, s(x), y) -> MINUS(x, y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) -> LE(y, x)
IFMOD(true, s(x), s(y)) -> MOD(minus(x, y), s(y))
IFMOD(true, s(x), s(y)) -> MINUS(x, y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
LE(s(x), s(y)) -> LE(x, y)
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Nar
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Narrowing Transformation
IFMOD(true, s(x), s(y)) -> MOD(minus(x, y), s(y))
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
three new Dependency Pairs are created:
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
MOD(s(0), s(s(x''))) -> IFMOD(false, s(0), s(s(x'')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Narrowing Transformation
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
IFMOD(true, s(x), s(y)) -> MOD(minus(x, y), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
two new Dependency Pairs are created:
IFMOD(true, s(x), s(y)) -> MOD(minus(x, y), s(y))
IFMOD(true, s(0), s(y'')) -> MOD(0, s(y''))
IFMOD(true, s(s(x'')), s(y'')) -> MOD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Instantiation Transformation
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
IFMOD(true, s(s(x'')), s(y'')) -> MOD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
two new Dependency Pairs are created:
IFMOD(true, s(s(x'')), s(y'')) -> MOD(ifminus(le(s(x''), y''), s(x''), y''), s(y''))
IFMOD(true, s(s(x'''')), s(0)) -> MOD(ifminus(le(s(x''''), 0), s(x''''), 0), s(0))
IFMOD(true, s(s(x'''')), s(s(x'''''))) -> MOD(ifminus(le(s(x''''), s(x''''')), s(x''''), s(x''''')), s(s(x''''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Rewriting Transformation
IFMOD(true, s(s(x'''')), s(0)) -> MOD(ifminus(le(s(x''''), 0), s(x''''), 0), s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
IFMOD(true, s(s(x'''')), s(0)) -> MOD(ifminus(le(s(x''''), 0), s(x''''), 0), s(0))
IFMOD(true, s(s(x'''')), s(0)) -> MOD(ifminus(false, s(x''''), 0), s(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Rewriting Transformation
IFMOD(true, s(s(x'''')), s(0)) -> MOD(ifminus(false, s(x''''), 0), s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
IFMOD(true, s(s(x'''')), s(0)) -> MOD(ifminus(false, s(x''''), 0), s(0))
IFMOD(true, s(s(x'''')), s(0)) -> MOD(s(minus(x'''', 0)), s(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Remaining Obligation(s)
IFMOD(true, s(s(x'''')), s(s(x'''''))) -> MOD(ifminus(le(x'''', x'''''), s(x''''), s(x''''')), s(s(x''''')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
IFMOD(true, s(s(x'''')), s(0)) -> MOD(s(minus(x'''', 0)), s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Rewriting Transformation
IFMOD(true, s(s(x'''')), s(s(x'''''))) -> MOD(ifminus(le(s(x''''), s(x''''')), s(x''''), s(x''''')), s(s(x''''')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
IFMOD(true, s(s(x'''')), s(s(x'''''))) -> MOD(ifminus(le(s(x''''), s(x''''')), s(x''''), s(x''''')), s(s(x''''')))
IFMOD(true, s(s(x'''')), s(s(x'''''))) -> MOD(ifminus(le(x'''', x'''''), s(x''''), s(x''''')), s(s(x''''')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Remaining Obligation(s)
IFMOD(true, s(s(x'''')), s(s(x'''''))) -> MOD(ifminus(le(x'''', x'''''), s(x''''), s(x''''')), s(s(x''''')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost
IFMOD(true, s(s(x'''')), s(0)) -> MOD(s(minus(x'''', 0)), s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
innermost