R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(minus(x, y), z) -> PLUS(y, z)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)
APP(cons(x, l), k) -> APP(l, k)
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) -> PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) -> APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) -> SUM(cons(x, cons(y, k)))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
PLUS(s(x), y) -> PLUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
PLUS(s(x), y) -> PLUS(x, y)
POL(PLUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
APP(cons(x, l), k) -> APP(l, k)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
APP(cons(x, l), k) -> APP(l, k)
POL(cons(x1, x2)) = 1 + x2 POL(APP(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
POL(plus(x1, x2)) = 0 POL(0) = 0 POL(MINUS(x1, x2)) = x1 POL(minus(x1, x2)) = 1 + x1 POL(s(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 9
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
MINUS(s(x), s(y)) -> MINUS(x, y)
POL(MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 9
↳Polo
...
→DP Problem 10
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
POL(plus(x1, x2)) = 0 POL(0) = 0 POL(SUM(x1)) = x1 POL(cons(x1, x2)) = 1 + x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 11
↳Dependency Graph
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 6
↳Polo
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
POL(plus(x1, x2)) = 0 POL(QUOT(x1, x2)) = x1 POL(0) = 1 POL(minus(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 12
↳Dependency Graph
→DP Problem 6
↳Polo
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polynomial Ordering
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
POL(plus(x1, x2)) = 0 POL(0) = 1 POL(SUM(x1)) = x1 POL(cons(x1, x2)) = 1 + x2 POL(nil) = 0 POL(sum(x1)) = 1 POL(s(x1)) = 0 POL(app(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 13
↳Dependency Graph
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost