R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(minus(x, y), z) -> PLUS(y, z)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)
APP(cons(x, l), k) -> APP(l, k)
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) -> PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) -> APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) -> SUM(cons(x, cons(y, k)))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
PLUS(s(x), y) -> PLUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
APP(cons(x, l), k) -> APP(l, k)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
APP(cons(x, l), k) -> APP(l, k)
APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')
APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')
APP(x1, x2) -> APP(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(minus(x, s(x'')), z') -> MINUS(x, s(plus(x'', z')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 13
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 13
↳FwdInst
...
→DP Problem 15
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 13
↳FwdInst
...
→DP Problem 16
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
SUM(x1) -> SUM(x1)
cons(x1, x2) -> cons(x1, x2)
plus(x1, x2) -> x2
s(x1) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 17
↳Dependency Graph
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
three new Dependency Pairs are created:
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
three new Dependency Pairs are created:
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 19
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
two new Dependency Pairs are created:
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 21
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(s(s(x'')))), s(s(s(s(y''))))) -> QUOT(minus(x'', y''), s(s(s(s(y'')))))
QUOT(s(s(s(minus(x'', y0)))), s(s(s(y'')))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 22
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(s(s(s(x'')))), s(s(s(s(y''))))) -> QUOT(minus(x'', y''), s(s(s(s(y'')))))
QUOT(s(s(s(minus(x'', y0)))), s(s(s(y'')))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(y''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(minus(x', s(x'')))), s(s(y''''))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 23
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(s(s(x'')))), s(s(s(s(y''))))) -> QUOT(minus(x'', y''), s(s(s(s(y'')))))
QUOT(s(s(s(minus(x'', y0)))), s(s(s(y'')))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(y''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(x'')))), s(s(y''''))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(y'''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
two new Dependency Pairs are created:
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))
QUOT(s(minus(x'', s(0))), s(y0'')) -> QUOT(minus(x'', s(y0'')), s(y0''))
QUOT(s(minus(x'', s(s(x0)))), s(y0'')) -> QUOT(minus(x'', s(s(plus(x0, y0'')))), s(y0''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 24
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(x0)))), s(y0'')) -> QUOT(minus(x'', s(s(plus(x0, y0'')))), s(y0''))
QUOT(s(s(s(s(x'')))), s(s(s(s(y''))))) -> QUOT(minus(x'', y''), s(s(s(s(y'')))))
QUOT(s(s(s(minus(x'', y0)))), s(s(s(y'')))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(y''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(x'')))), s(s(y''''))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(y'''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(0))), s(y0'')) -> QUOT(minus(x'', s(y0'')), s(y0''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(s(x'')))), s(s(s(s(y''))))) -> QUOT(minus(x'', y''), s(s(s(s(y'')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(s(s(x'))))), s(s(s(s(s(y')))))) -> QUOT(minus(x', y'), s(s(s(s(s(y'))))))
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 25
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(s(s(x'))))), s(s(s(s(s(y')))))) -> QUOT(minus(x', y'), s(s(s(s(s(y'))))))
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(minus(x'', s(s(x0)))), s(y0'')) -> QUOT(minus(x'', s(s(plus(x0, y0'')))), s(y0''))
QUOT(s(s(s(minus(x'', y0)))), s(s(s(y'')))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(y''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(x'')))), s(s(y''''))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(y'''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(0))), s(y0'')) -> QUOT(minus(x'', s(y0'')), s(y0''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(minus(x'', y0)))), s(s(s(y'')))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(y''))))
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 26
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(minus(x'', s(s(x0)))), s(y0'')) -> QUOT(minus(x'', s(s(plus(x0, y0'')))), s(y0''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(0))), s(y0'')) -> QUOT(minus(x'', s(y0'')), s(y0''))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(x'')))), s(s(y''''))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(y'''')))
QUOT(s(s(s(s(s(x'))))), s(s(s(s(s(y')))))) -> QUOT(minus(x', y'), s(s(s(s(s(y'))))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
two new Dependency Pairs are created:
QUOT(s(s(minus(x', s(x'')))), s(s(y''''))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(y'''')))
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 27
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
QUOT(s(s(s(s(s(x'))))), s(s(s(s(s(y')))))) -> QUOT(minus(x', y'), s(s(s(s(s(y'))))))
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(x0)))), s(y0'')) -> QUOT(minus(x'', s(s(plus(x0, y0'')))), s(y0''))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(0))), s(y0'')) -> QUOT(minus(x'', s(y0'')), s(y0''))
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
no new Dependency Pairs are created.
QUOT(s(minus(x'', s(0))), s(y0'')) -> QUOT(minus(x'', s(y0'')), s(y0''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 28
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
QUOT(s(s(s(s(s(x'))))), s(s(s(s(s(y')))))) -> QUOT(minus(x', y'), s(s(s(s(s(y'))))))
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(x0)))), s(y0'')) -> QUOT(minus(x'', s(s(plus(x0, y0'')))), s(y0''))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
two new Dependency Pairs are created:
QUOT(s(minus(x'', s(s(x0)))), s(y0'')) -> QUOT(minus(x'', s(s(plus(x0, y0'')))), s(y0''))
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 29
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
QUOT(s(s(s(s(s(x'))))), s(s(s(s(s(y')))))) -> QUOT(minus(x', y'), s(s(s(s(s(y'))))))
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(s(s(x'))))), s(s(s(s(s(y')))))) -> QUOT(minus(x', y'), s(s(s(s(s(y'))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 30
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(minus(x', y'))))), s(s(s(s(y'''))))) -> QUOT(minus(x', plus(y', y''')), s(s(s(s(y''')))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 31
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
two new Dependency Pairs are created:
QUOT(s(s(s(minus(x'', s(x'))))), s(s(s(y''')))) -> QUOT(minus(x'', s(plus(x', y'''))), s(s(s(y'''))))
QUOT(s(s(s(minus(x'', s(0))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(y'''')), s(s(s(y''''))))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 32
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(minus(x'', s(0))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(y'''')), s(s(s(y''''))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
no new Dependency Pairs are created.
QUOT(s(s(minus(x', s(0)))), s(s(y'''''))) -> QUOT(minus(x', s(y''''')), s(s(y''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 33
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(minus(x'', s(0))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(y'''')), s(s(s(y''''))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
two new Dependency Pairs are created:
QUOT(s(s(minus(x', s(s(x0))))), s(s(y'''''))) -> QUOT(minus(x', s(s(plus(x0, y''''')))), s(s(y''''')))
QUOT(s(s(minus(x', s(s(0))))), s(s(y''''''))) -> QUOT(minus(x', s(s(y''''''))), s(s(y'''''')))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 34
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(minus(x', s(s(0))))), s(s(y''''''))) -> QUOT(minus(x', s(s(y''''''))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(s(minus(x'', s(0))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(y'''')), s(s(s(y''''))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
no new Dependency Pairs are created.
QUOT(s(minus(x'', s(s(0)))), s(y0''')) -> QUOT(minus(x'', s(s(y0'''))), s(y0'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 35
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x', s(s(0))))), s(s(y''''''))) -> QUOT(minus(x', s(s(y''''''))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(0))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(y'''')), s(s(s(y''''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
two new Dependency Pairs are created:
QUOT(s(minus(x'', s(s(s(x'))))), s(y0''')) -> QUOT(minus(x'', s(s(s(plus(x', y0'''))))), s(y0'''))
QUOT(s(minus(x'', s(s(s(0))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(y0'''')))), s(y0''''))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 36
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(s(0))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(y0'''')))), s(y0''''))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(0))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(y'''')), s(s(s(y''''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', s(s(0))))), s(s(y''''''))) -> QUOT(minus(x', s(s(y''''''))), s(s(y'''''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
no new Dependency Pairs are created.
QUOT(s(s(s(minus(x'', s(0))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(y'''')), s(s(s(y''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 37
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(s(0))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(y0'''')))), s(y0''''))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(s(0))))), s(s(y''''''))) -> QUOT(minus(x', s(s(y''''''))), s(s(y'''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
no new Dependency Pairs are created.
QUOT(s(s(minus(x', s(s(0))))), s(s(y''''''))) -> QUOT(minus(x', s(s(y''''''))), s(s(y'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 38
↳Narrowing Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(s(s(0))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(y0'''')))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
no new Dependency Pairs are created.
QUOT(s(minus(x'', s(s(s(0))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(y0'''')))), s(y0''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 39
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
three new Dependency Pairs are created:
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(s(s(x''''')))), s(s(0))) -> QUOT(s(s(x''''')), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 40
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(s(s(x''''')))), s(s(0))) -> QUOT(s(s(x''''')), s(s(0)))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
three new Dependency Pairs are created:
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(s(s(x''''''))), s(0)) -> QUOT(s(s(x'''''')), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 41
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(s(x''''''))), s(0)) -> QUOT(s(s(x'''''')), s(0))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(s(s(x''''')))), s(s(0))) -> QUOT(s(s(x''''')), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
four new Dependency Pairs are created:
QUOT(s(s(s(x''))), s(s(s(0)))) -> QUOT(x'', s(s(s(0))))
QUOT(s(s(s(s(s(s(x'''')))))), s(s(s(0)))) -> QUOT(s(s(s(x''''))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 42
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(s(x''''''))), s(0)) -> QUOT(s(s(x'''''')), s(0))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(x'''')))))), s(s(s(0)))) -> QUOT(s(s(s(x''''))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(s(s(x''''')))), s(s(0))) -> QUOT(s(s(x''''')), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
five new Dependency Pairs are created:
QUOT(s(s(s(s(x''')))), s(s(s(s(0))))) -> QUOT(x''', s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 43
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
QUOT(s(s(s(x''''''))), s(0)) -> QUOT(s(s(x'''''')), s(0))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(x'''')))))), s(s(s(0)))) -> QUOT(s(s(s(x''''))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(s(s(x''''')))), s(s(0))) -> QUOT(s(s(x''''')), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
four new Dependency Pairs are created:
QUOT(s(s(s(s(x''''')))), s(s(0))) -> QUOT(s(s(x''''')), s(s(0)))
QUOT(s(s(s(s(minus(x'''0, s(s(s(x'''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'''0, s(s(s(x'''''')))))), s(s(0)))
QUOT(s(s(s(s(s(s(x''''''')))))), s(s(0))) -> QUOT(s(s(s(s(x''''''')))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))))), s(s(0))) -> QUOT(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 44
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(s(x''''''))), s(0)) -> QUOT(s(s(x'''''')), s(0))
QUOT(s(s(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))))), s(s(0))) -> QUOT(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(x''''''')))))), s(s(0))) -> QUOT(s(s(s(s(x''''''')))), s(s(0)))
QUOT(s(s(s(s(minus(x'''0, s(s(s(x'''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'''0, s(s(s(x'''''')))))), s(s(0)))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(x'''')))))), s(s(s(0)))) -> QUOT(s(s(s(x''''))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
four new Dependency Pairs are created:
QUOT(s(s(s(x''''''))), s(0)) -> QUOT(s(s(x'''''')), s(0))
QUOT(s(s(s(minus(x''''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x''''''', s(x'0''')))), s(0))
QUOT(s(s(s(s(x'''''''')))), s(0)) -> QUOT(s(s(s(x''''''''))), s(0))
QUOT(s(s(s(s(minus(x'''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(minus(x'''''''', s(s(s(s(x0'''')))))))), s(0)) -> QUOT(s(s(minus(x'''''''', s(s(s(s(x0''''))))))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 45
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(minus(x'''''''', s(s(s(s(x0'''')))))))), s(0)) -> QUOT(s(s(minus(x'''''''', s(s(s(s(x0''''))))))), s(0))
QUOT(s(s(s(s(minus(x'''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(x'''''''')))), s(0)) -> QUOT(s(s(s(x''''''''))), s(0))
QUOT(s(s(s(minus(x''''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x''''''', s(x'0''')))), s(0))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
QUOT(s(s(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))))), s(s(0))) -> QUOT(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(x''''''')))))), s(s(0))) -> QUOT(s(s(s(s(x''''''')))), s(s(0)))
QUOT(s(s(s(s(minus(x'''0, s(s(s(x'''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'''0, s(s(s(x'''''')))))), s(s(0)))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(x'''')))))), s(s(s(0)))) -> QUOT(s(s(s(x''''))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
five new Dependency Pairs are created:
QUOT(s(s(s(s(s(s(x'''')))))), s(s(s(0)))) -> QUOT(s(s(s(x''''))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x''''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(x''''''))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(x'''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(minus(x'''''', s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(minus(x'''''', s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(minus(x'''0'', s(s(s(x'''''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(minus(x'''''', s(s(s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(minus(x'''''', s(s(s(s(x0''''))))))))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 46
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(s(minus(x'''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(x'''''''')))), s(0)) -> QUOT(s(s(s(x''''''''))), s(0))
QUOT(s(s(s(minus(x''''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x''''''', s(x'0''')))), s(0))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(s(s(s(s(s(minus(x'''''', s(s(s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(minus(x'''''', s(s(s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(minus(x'''0'', s(s(s(x'''''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(minus(x'''''', s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(minus(x'''''', s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(x''''''))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(x'''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x''''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))))), s(s(0))) -> QUOT(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(x''''''')))))), s(s(0))) -> QUOT(s(s(s(s(x''''''')))), s(s(0)))
QUOT(s(s(s(s(minus(x'''0, s(s(s(x'''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'''0, s(s(s(x'''''')))))), s(s(0)))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(s(minus(x'''''''', s(s(s(s(x0'''')))))))), s(0)) -> QUOT(s(s(minus(x'''''''', s(s(s(s(x0''''))))))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
five new Dependency Pairs are created:
QUOT(s(s(s(s(s(s(x''''''')))))), s(s(0))) -> QUOT(s(s(s(s(x''''''')))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(x''''''''')))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(x''''''''')))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 18
↳Nar
...
→DP Problem 47
↳Forward Instantiation Transformation
→DP Problem 6
↳Remaining
QUOT(s(s(s(minus(x'''''''', s(s(s(s(x0'''')))))))), s(0)) -> QUOT(s(s(minus(x'''''''', s(s(s(s(x0''''))))))), s(0))
QUOT(s(s(s(s(x'''''''')))), s(0)) -> QUOT(s(s(s(x''''''''))), s(0))
QUOT(s(s(s(minus(x''''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x''''''', s(x'0''')))), s(0))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
QUOT(s(s(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(x''''''''')))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(x''''''''')))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(minus(x'''''', s(s(s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(minus(x'''''', s(s(s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(minus(x'''0'', s(s(s(x'''''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(minus(x'''''', s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(minus(x'''''', s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(x''''''))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(x'''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x''''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))))), s(s(0))) -> QUOT(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))), s(s(0)))
QUOT(s(s(s(s(minus(x'''0, s(s(s(x'''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'''0, s(s(s(x'''''')))))), s(s(0)))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(s(s(minus(x'''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''', s(x'0'''''))))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
five new Dependency Pairs are created:
QUOT(s(s(s(s(x'''''''')))), s(0)) -> QUOT(s(s(s(x''''''''))), s(0))
QUOT(s(s(s(s(minus(x''''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x''''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(minus(x'''''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(s(x''''''''''))))), s(0)) -> QUOT(s(s(s(s(x'''''''''')))), s(0))
QUOT(s(s(s(s(s(minus(x'''''''''', s(x'0'''''''))))))), s(0)) -> QUOT(s(s(s(s(minus(x'''''''''', s(x'0''''''')))))), s(0))
QUOT(s(s(s(s(minus(x'''''''''', s(s(s(s(x0''''''))))))))), s(0)) -> QUOT(s(s(s(minus(x'''''''''', s(s(s(s(x0'''''')))))))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining Obligation(s)
QUOT(s(s(s(s(minus(x'''''''''', s(s(s(s(x0''''''))))))))), s(0)) -> QUOT(s(s(s(minus(x'''''''''', s(s(s(s(x0'''''')))))))), s(0))
QUOT(s(s(s(s(s(minus(x'''''''''', s(x'0'''''''))))))), s(0)) -> QUOT(s(s(s(s(minus(x'''''''''', s(x'0''''''')))))), s(0))
QUOT(s(s(s(s(s(x''''''''''))))), s(0)) -> QUOT(s(s(s(s(x'''''''''')))), s(0))
QUOT(s(s(s(s(minus(x'''''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(minus(x''''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x''''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(minus(x'''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(minus(x''''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x''''''', s(x'0''')))), s(0))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(x''''''''')))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(x''''''''')))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(minus(x'''''', s(s(s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(minus(x'''''', s(s(s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(minus(x'''0'', s(s(s(x'''''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(minus(x'''''', s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(minus(x'''''', s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(x''''''))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(x'''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x''''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))))), s(s(0))) -> QUOT(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))), s(s(0)))
QUOT(s(s(s(s(minus(x'''0, s(s(s(x'''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'''0, s(s(s(x'''''')))))), s(s(0)))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(s(minus(x'''''''', s(s(s(s(x0'''')))))))), s(0)) -> QUOT(s(s(minus(x'''''''', s(s(s(s(x0''''))))))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳AFS
→DP Problem 5
↳Nar
→DP Problem 6
↳Remaining Obligation(s)
QUOT(s(s(s(s(minus(x'''''''''', s(s(s(s(x0''''''))))))))), s(0)) -> QUOT(s(s(s(minus(x'''''''''', s(s(s(s(x0'''''')))))))), s(0))
QUOT(s(s(s(s(s(minus(x'''''''''', s(x'0'''''''))))))), s(0)) -> QUOT(s(s(s(s(minus(x'''''''''', s(x'0''''''')))))), s(0))
QUOT(s(s(s(s(s(x''''''''''))))), s(0)) -> QUOT(s(s(s(s(x'''''''''')))), s(0))
QUOT(s(s(s(s(minus(x'''''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(minus(x''''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x''''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(s(minus(x'''''''', s(x'0''''')))))), s(0)) -> QUOT(s(s(s(minus(x'''''''', s(x'0'''''))))), s(0))
QUOT(s(s(s(minus(x''''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x''''''', s(x'0''')))), s(0))
QUOT(s(s(minus(x''''', s(s(s(s(x0''))))))), s(0)) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(0))
QUOT(s(s(s(minus(x'''''', s(x'0'''))))), s(0)) -> QUOT(s(s(minus(x'''''', s(x'0''')))), s(0))
QUOT(s(s(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(minus(x''''''''', s(s(s(s(x0'''''')))))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(minus(x'0''''', s(s(s(x''''''''')))))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(s(x''''''''')))))))), s(s(0))) -> QUOT(s(s(s(s(s(s(x''''''''')))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'''0'', s(s(s(x''''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x'''''''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(s(minus(x'''''', s(s(s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(minus(x'''''', s(s(s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(minus(x'''0'', s(s(s(x''''''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(minus(x'''0'', s(s(s(x'''''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(minus(x'''''', s(s(x0'''')))))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(minus(x'''''', s(s(x0''''))))))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(s(s(s(x''''''))))))))), s(s(s(0)))) -> QUOT(s(s(s(s(s(s(x'''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x''''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))))), s(s(0))) -> QUOT(s(s(s(minus(x''''''', s(s(s(s(x0'''')))))))), s(s(0)))
QUOT(s(s(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))))), s(s(0))) -> QUOT(s(s(s(s(minus(x'0''', s(s(s(x''''''')))))))), s(s(0)))
QUOT(s(s(s(s(minus(x'''0, s(s(s(x'''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'''0, s(s(s(x'''''')))))), s(s(0)))
QUOT(s(s(s(s(s(minus(x''''', s(s(s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(minus(x'0', s(s(s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(minus(x''''', s(s(x0'')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(minus(x''''', s(s(x0'')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(minus(x'0', s(x''''')))))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(minus(x'0', s(x''''')))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(s(s(x''''')))))))), s(s(s(s(0))))) -> QUOT(s(s(s(s(x''''')))), s(s(s(s(0)))))
QUOT(s(s(s(s(minus(x'''', s(s(s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(minus(x'''', s(s(s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(s(s(minus(x'''0, s(s(s(x'''''))))))))), s(s(s(0)))) -> QUOT(s(s(minus(x'''0, s(s(s(x''''')))))), s(s(s(0))))
QUOT(s(s(s(s(s(s(minus(x'''', s(s(x0''))))))))), s(s(s(0)))) -> QUOT(s(s(s(minus(x'''', s(s(x0'')))))), s(s(s(0))))
QUOT(s(s(s(minus(x''''', s(s(s(s(x0'')))))))), s(s(0))) -> QUOT(s(minus(x''''', s(s(s(s(x0'')))))), s(s(0)))
QUOT(s(s(s(s(minus(x'0', s(s(s(x''''')))))))), s(s(0))) -> QUOT(s(s(minus(x'0', s(s(s(x''''')))))), s(s(0)))
QUOT(s(s(minus(x', s(s(s(x'')))))), s(s(y''''''))) -> QUOT(minus(x', s(s(s(plus(x'', y''''''))))), s(s(y'''''')))
QUOT(s(s(s(minus(x'', s(s(x0)))))), s(s(s(y'''')))) -> QUOT(minus(x'', s(s(plus(x0, y'''')))), s(s(s(y''''))))
QUOT(s(s(s(s(minus(x', s(x'')))))), s(s(s(s(y''''))))) -> QUOT(minus(x', s(plus(x'', y''''))), s(s(s(s(y'''')))))
QUOT(s(s(s(s(s(s(x'')))))), s(s(s(s(s(s(y''))))))) -> QUOT(minus(x'', y''), s(s(s(s(s(s(y'')))))))
QUOT(s(s(s(s(s(minus(x'', y0)))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', plus(y0, y'')), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(x''))))), s(s(s(s(s(0)))))) -> QUOT(x'', s(s(s(s(s(0))))))
QUOT(s(minus(x'', s(s(s(s(x0)))))), s(y0'''')) -> QUOT(minus(x'', s(s(s(s(plus(x0, y0'''')))))), s(y0''''))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(s(minus(x'''''''', s(s(s(s(x0'''')))))))), s(0)) -> QUOT(s(s(minus(x'''''''', s(s(s(s(x0''''))))))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
innermost