R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
LE(s(x), s(y)) -> LE(x, y)
APP(add(n, x), y) -> APP(x, y)
LOW(n, add(m, x)) -> IFLOW(le(m, n), n, add(m, x))
LOW(n, add(m, x)) -> LE(m, n)
IFLOW(true, n, add(m, x)) -> LOW(n, x)
IFLOW(false, n, add(m, x)) -> LOW(n, x)
HIGH(n, add(m, x)) -> IFHIGH(le(m, n), n, add(m, x))
HIGH(n, add(m, x)) -> LE(m, n)
IFHIGH(true, n, add(m, x)) -> HIGH(n, x)
IFHIGH(false, n, add(m, x)) -> HIGH(n, x)
QUICKSORT(add(n, x)) -> APP(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x))
QUICKSORT(add(n, x)) -> LOW(n, x)
QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) -> HIGH(n, x)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(true, n, add(m, x)) -> add(m, low(n, x))
iflow(false, n, add(m, x)) -> low(n, x)
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
quicksort(nil) -> nil
quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 8
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
MINUS(s(x), s(y)) -> MINUS(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
LE(s(x), s(y)) -> LE(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(true, n, add(m, x)) -> add(m, low(n, x))
iflow(false, n, add(m, x)) -> low(n, x)
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
quicksort(nil) -> nil
quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
LE(s(x), s(y)) -> LE(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
APP(add(n, x), y) -> APP(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(true, n, add(m, x)) -> add(m, low(n, x))
iflow(false, n, add(m, x)) -> low(n, x)
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
quicksort(nil) -> nil
quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
APP(add(n, x), y) -> APP(x, y)
none
innermost
|
|
trivial
add(x1, x2) -> add(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(true, n, add(m, x)) -> add(m, low(n, x))
iflow(false, n, add(m, x)) -> low(n, x)
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
quicksort(nil) -> nil
quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 11
↳Negative Polynomial Order
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(s(x), s(y)) -> minus(x, y)
minus(x, 0) -> x
innermost
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(s(x), s(y)) -> minus(x, y)
minus(x, 0) -> x
POL( QUOT(x1, x2) ) = x1
POL( s(x1) ) = x1 + 1
POL( minus(x1, x2) ) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 11
↳Neg POLO
...
→DP Problem 12
↳Dependency Graph
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
minus(s(x), s(y)) -> minus(x, y)
minus(x, 0) -> x
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
IFLOW(false, n, add(m, x)) -> LOW(n, x)
IFLOW(true, n, add(m, x)) -> LOW(n, x)
LOW(n, add(m, x)) -> IFLOW(le(m, n), n, add(m, x))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(true, n, add(m, x)) -> add(m, low(n, x))
iflow(false, n, add(m, x)) -> low(n, x)
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
quicksort(nil) -> nil
quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
IFLOW(false, n, add(m, x)) -> LOW(n, x)
IFLOW(true, n, add(m, x)) -> LOW(n, x)
LOW(n, add(m, x)) -> IFLOW(le(m, n), n, add(m, x))
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
|
|
|
|
trivial
add(x1, x2) -> add(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
→DP Problem 7
↳UsableRules
IFHIGH(false, n, add(m, x)) -> HIGH(n, x)
IFHIGH(true, n, add(m, x)) -> HIGH(n, x)
HIGH(n, add(m, x)) -> IFHIGH(le(m, n), n, add(m, x))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(true, n, add(m, x)) -> add(m, low(n, x))
iflow(false, n, add(m, x)) -> low(n, x)
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
quicksort(nil) -> nil
quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 14
↳Size-Change Principle
→DP Problem 7
↳UsableRules
IFHIGH(false, n, add(m, x)) -> HIGH(n, x)
IFHIGH(true, n, add(m, x)) -> HIGH(n, x)
HIGH(n, add(m, x)) -> IFHIGH(le(m, n), n, add(m, x))
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
innermost
|
|
|
|
trivial
add(x1, x2) -> add(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳Usable Rules (Innermost)
QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(true, n, add(m, x)) -> add(m, low(n, x))
iflow(false, n, add(m, x)) -> low(n, x)
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
quicksort(nil) -> nil
quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 15
↳Negative Polynomial Order
QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x))
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(false, n, add(m, x)) -> low(n, x)
iflow(true, n, add(m, x)) -> add(m, low(n, x))
innermost
QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x))
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(false, n, add(m, x)) -> low(n, x)
iflow(true, n, add(m, x)) -> add(m, low(n, x))
POL( QUICKSORT(x1) ) = x1
POL( add(x1, x2) ) = x2 + 1
POL( high(x1, x2) ) = x2
POL( low(x1, x2) ) = x2
POL( le(x1, x2) ) = 0
POL( true ) = 0
POL( false ) = 0
POL( ifhigh(x1, ..., x3) ) = x3
POL( nil ) = 0
POL( iflow(x1, ..., x3) ) = x3
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 15
↳Neg POLO
...
→DP Problem 16
↳Dependency Graph
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false
ifhigh(true, n, add(m, x)) -> high(n, x)
ifhigh(false, n, add(m, x)) -> add(m, high(n, x))
high(n, nil) -> nil
high(n, add(m, x)) -> ifhigh(le(m, n), n, add(m, x))
low(n, nil) -> nil
low(n, add(m, x)) -> iflow(le(m, n), n, add(m, x))
iflow(false, n, add(m, x)) -> low(n, x)
iflow(true, n, add(m, x)) -> add(m, low(n, x))
innermost