R
↳Dependency Pair Analysis
F(0, 1, x) -> F(s(x), x, x)
F(x, y, s(z)) -> F(0, 1, z)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
F(x, y, s(z)) -> F(0, 1, z)
F(0, 1, x) -> F(s(x), x, x)
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
innermost
two new Dependency Pairs are created:
F(x, y, s(z)) -> F(0, 1, z)
F(0, 1, s(z'')) -> F(0, 1, z'')
F(s(s(z')), s(z'), s(z')) -> F(0, 1, z')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Forward Instantiation Transformation
F(0, 1, s(z'')) -> F(0, 1, z'')
F(s(s(z')), s(z'), s(z')) -> F(0, 1, z')
F(0, 1, x) -> F(s(x), x, x)
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
innermost
one new Dependency Pair is created:
F(0, 1, x) -> F(s(x), x, x)
F(0, 1, s(z'''')) -> F(s(s(z'''')), s(z''''), s(z''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
F(s(s(z')), s(z'), s(z')) -> F(0, 1, z')
F(0, 1, s(z'''')) -> F(s(s(z'''')), s(z''''), s(z''''))
F(0, 1, s(z'')) -> F(0, 1, z'')
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
innermost
two new Dependency Pairs are created:
F(0, 1, s(z'')) -> F(0, 1, z'')
F(0, 1, s(s(z''''))) -> F(0, 1, s(z''''))
F(0, 1, s(s(z''''''))) -> F(0, 1, s(z''''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
F(0, 1, s(s(z''''''))) -> F(0, 1, s(z''''''))
F(0, 1, s(s(z''''))) -> F(0, 1, s(z''''))
F(0, 1, s(z'''')) -> F(s(s(z'''')), s(z''''), s(z''''))
F(s(s(z')), s(z'), s(z')) -> F(0, 1, z')
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
innermost
three new Dependency Pairs are created:
F(s(s(z')), s(z'), s(z')) -> F(0, 1, z')
F(s(s(s(z''''''))), s(s(z'''''')), s(s(z''''''))) -> F(0, 1, s(z''''''))
F(s(s(s(s(z'''''')))), s(s(s(z''''''))), s(s(s(z'''''')))) -> F(0, 1, s(s(z'''''')))
F(s(s(s(s(z'''''''')))), s(s(s(z''''''''))), s(s(s(z'''''''')))) -> F(0, 1, s(s(z'''''''')))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
F(s(s(s(s(z'''''''')))), s(s(s(z''''''''))), s(s(s(z'''''''')))) -> F(0, 1, s(s(z'''''''')))
F(s(s(s(s(z'''''')))), s(s(s(z''''''))), s(s(s(z'''''')))) -> F(0, 1, s(s(z'''''')))
F(0, 1, s(s(z''''))) -> F(0, 1, s(z''''))
F(s(s(s(z''''''))), s(s(z'''''')), s(s(z''''''))) -> F(0, 1, s(z''''''))
F(0, 1, s(z'''')) -> F(s(s(z'''')), s(z''''), s(z''''))
F(0, 1, s(s(z''''''))) -> F(0, 1, s(z''''''))
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
innermost
three new Dependency Pairs are created:
F(0, 1, s(z'''')) -> F(s(s(z'''')), s(z''''), s(z''''))
F(0, 1, s(s(z'''''''''))) -> F(s(s(s(z'''''''''))), s(s(z''''''''')), s(s(z''''''''')))
F(0, 1, s(s(s(z''''''''')))) -> F(s(s(s(s(z''''''''')))), s(s(s(z'''''''''))), s(s(s(z'''''''''))))
F(0, 1, s(s(s(z''''''''''')))) -> F(s(s(s(s(z''''''''''')))), s(s(s(z'''''''''''))), s(s(s(z'''''''''''))))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
F(0, 1, s(s(s(z''''''''''')))) -> F(s(s(s(s(z''''''''''')))), s(s(s(z'''''''''''))), s(s(s(z'''''''''''))))
F(s(s(s(s(z'''''')))), s(s(s(z''''''))), s(s(s(z'''''')))) -> F(0, 1, s(s(z'''''')))
F(0, 1, s(s(s(z''''''''')))) -> F(s(s(s(s(z''''''''')))), s(s(s(z'''''''''))), s(s(s(z'''''''''))))
F(s(s(s(z''''''))), s(s(z'''''')), s(s(z''''''))) -> F(0, 1, s(z''''''))
F(0, 1, s(s(z'''''''''))) -> F(s(s(s(z'''''''''))), s(s(z''''''''')), s(s(z''''''''')))
F(0, 1, s(s(z''''''))) -> F(0, 1, s(z''''''))
F(0, 1, s(s(z''''))) -> F(0, 1, s(z''''))
F(s(s(s(s(z'''''''')))), s(s(s(z''''''''))), s(s(s(z'''''''')))) -> F(0, 1, s(s(z'''''''')))
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
innermost
F(s(s(s(s(z'''''')))), s(s(s(z''''''))), s(s(s(z'''''')))) -> F(0, 1, s(s(z'''''')))
F(s(s(s(z''''''))), s(s(z'''''')), s(s(z''''''))) -> F(0, 1, s(z''''''))
F(0, 1, s(s(z''''''))) -> F(0, 1, s(z''''''))
F(0, 1, s(s(z''''))) -> F(0, 1, s(z''''))
F(s(s(s(s(z'''''''')))), s(s(s(z''''''''))), s(s(s(z'''''''')))) -> F(0, 1, s(s(z'''''''')))
POL(0) = 0 POL(1) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x3
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
F(0, 1, s(s(s(z''''''''''')))) -> F(s(s(s(s(z''''''''''')))), s(s(s(z'''''''''''))), s(s(s(z'''''''''''))))
F(0, 1, s(s(s(z''''''''')))) -> F(s(s(s(s(z''''''''')))), s(s(s(z'''''''''))), s(s(s(z'''''''''))))
F(0, 1, s(s(z'''''''''))) -> F(s(s(s(z'''''''''))), s(s(z''''''''')), s(s(z''''''''')))
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
innermost