Term Rewriting System R:
[x, y, n, u, v, w, z]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
APP(add(n, x), y) -> APP(x, y)
CONCAT(cons(u, v), y) -> CONCAT(v, y)
LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(u, v)
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(w, z)

Furthermore, R contains seven SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Forward Instantiation Transformation`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x), s(y)) -> MINUS(x, y)
one new Dependency Pair is created:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 8`
`             ↳Forward Instantiation Transformation`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
one new Dependency Pair is created:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 8`
`             ↳FwdInst`
`             ...`
`               →DP Problem 9`
`                 ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1, x2)) =  1 + x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 8`
`             ↳FwdInst`
`             ...`
`               →DP Problem 10`
`                 ↳Dependency Graph`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Forward Instantiation Transformation`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

APP(add(n, x), y) -> APP(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

APP(add(n, x), y) -> APP(x, y)
one new Dependency Pair is created:

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`           →DP Problem 11`
`             ↳Forward Instantiation Transformation`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

one new Dependency Pair is created:

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`           →DP Problem 11`
`             ↳FwdInst`
`             ...`
`               →DP Problem 12`
`                 ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(APP(x1, x2)) =  1 + x1 POL(add(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`           →DP Problem 11`
`             ↳FwdInst`
`             ...`
`               →DP Problem 13`
`                 ↳Dependency Graph`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳Forward Instantiation Transformation`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

CONCAT(cons(u, v), y) -> CONCAT(v, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

CONCAT(cons(u, v), y) -> CONCAT(v, y)
one new Dependency Pair is created:

CONCAT(cons(u, cons(u'', v'')), y'') -> CONCAT(cons(u'', v''), y'')

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`           →DP Problem 14`
`             ↳Forward Instantiation Transformation`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

CONCAT(cons(u, cons(u'', v'')), y'') -> CONCAT(cons(u'', v''), y'')

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

CONCAT(cons(u, cons(u'', v'')), y'') -> CONCAT(cons(u'', v''), y'')
one new Dependency Pair is created:

CONCAT(cons(u, cons(u''0, cons(u'''', v''''))), y'''') -> CONCAT(cons(u''0, cons(u'''', v'''')), y'''')

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`           →DP Problem 14`
`             ↳FwdInst`
`             ...`
`               →DP Problem 15`
`                 ↳Polynomial Ordering`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

CONCAT(cons(u, cons(u''0, cons(u'''', v''''))), y'''') -> CONCAT(cons(u''0, cons(u'''', v'''')), y'''')

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

CONCAT(cons(u, cons(u''0, cons(u'''', v''''))), y'''') -> CONCAT(cons(u''0, cons(u'''', v'''')), y'''')

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  1 + x2 POL(CONCAT(x1, x2)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`           →DP Problem 14`
`             ↳FwdInst`
`             ...`
`               →DP Problem 16`
`                 ↳Dependency Graph`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Narrowing Transformation`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
two new Dependency Pairs are created:

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))

The transformation is resulting in two new DP problems:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 17`
`             ↳Forward Instantiation Transformation`
`           →DP Problem 18`
`             ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
one new Dependency Pair is created:

QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 17`
`             ↳FwdInst`
`             ...`
`               →DP Problem 19`
`                 ↳Polynomial Ordering`
`           →DP Problem 18`
`             ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(QUOT(x1, x2)) =  1 + x1 POL(0) =  0 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 17`
`             ↳FwdInst`
`             ...`
`               →DP Problem 22`
`                 ↳Dependency Graph`
`           →DP Problem 18`
`             ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 17`
`             ↳FwdInst`
`           →DP Problem 18`
`             ↳Narrowing Transformation`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
two new Dependency Pairs are created:

QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))

The transformation is resulting in two new DP problems:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 17`
`             ↳FwdInst`
`           →DP Problem 18`
`             ↳Nar`
`             ...`
`               →DP Problem 20`
`                 ↳Polynomial Ordering`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(QUOT(x1, x2)) =  1 + x1 POL(0) =  0 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 17`
`             ↳FwdInst`
`           →DP Problem 18`
`             ↳Nar`
`             ...`
`               →DP Problem 21`
`                 ↳Polynomial Ordering`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(QUOT(x1, x2)) =  1 + x1 + x2 POL(0) =  1 POL(minus(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳Forward Instantiation Transformation`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

one new Dependency Pair is created:

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`           →DP Problem 25`
`             ↳Forward Instantiation Transformation`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

one new Dependency Pair is created:

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`           →DP Problem 25`
`             ↳FwdInst`
`             ...`
`               →DP Problem 26`
`                 ↳Polynomial Ordering`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(REVERSE(x1)) =  1 + x1 POL(add(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`           →DP Problem 25`
`             ↳FwdInst`
`             ...`
`               →DP Problem 27`
`                 ↳Dependency Graph`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Narrowing Transformation`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))
four new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(w, z)) -> LESSLEAVES(v', concat(w, z))
LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`           →DP Problem 28`
`             ↳Narrowing Transformation`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(w, z)) -> LESSLEAVES(v', concat(w, z))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(leaf, v'), cons(w, z)) -> LESSLEAVES(v', concat(w, z))
two new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`           →DP Problem 28`
`             ↳Nar`
`             ...`
`               →DP Problem 29`
`                 ↳Narrowing Transformation`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
four new Dependency Pairs are created:

LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`           →DP Problem 28`
`             ↳Nar`
`             ...`
`               →DP Problem 30`
`                 ↳Narrowing Transformation`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
two new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`           →DP Problem 28`
`             ↳Nar`
`             ...`
`               →DP Problem 31`
`                 ↳Narrowing Transformation`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
four new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(cons(u'', v''), z')) -> LESSLEAVES(v', cons(u'', concat(v'', z')))
LESSLEAVES(cons(cons(u''', v'''), v0), cons(cons(u'', v''), z')) -> LESSLEAVES(cons(u''', concat(v''', v0)), cons(u'', concat(v'', z')))
LESSLEAVES(cons(u, v), cons(cons(u'', leaf), z'')) -> LESSLEAVES(concat(u, v), cons(u'', z''))
LESSLEAVES(cons(u, v), cons(cons(u'', cons(u''', v''')), z'')) -> LESSLEAVES(concat(u, v), cons(u'', cons(u''', concat(v''', z''))))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`           →DP Problem 28`
`             ↳Nar`
`             ...`
`               →DP Problem 32`
`                 ↳Polynomial Ordering`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

LESSLEAVES(cons(u, v), cons(cons(u'', cons(u''', v''')), z'')) -> LESSLEAVES(concat(u, v), cons(u'', cons(u''', concat(v''', z''))))
LESSLEAVES(cons(u, v), cons(cons(u'', leaf), z'')) -> LESSLEAVES(concat(u, v), cons(u'', z''))
LESSLEAVES(cons(cons(u''', v'''), v0), cons(cons(u'', v''), z')) -> LESSLEAVES(cons(u''', concat(v''', v0)), cons(u'', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(cons(u'', v''), z')) -> LESSLEAVES(v', cons(u'', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pairs can be strictly oriented:

LESSLEAVES(cons(leaf, v'), cons(cons(u'', v''), z')) -> LESSLEAVES(v', cons(u'', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  x1 + x2 POL(LESS_LEAVES(x1, x2)) =  x1 POL(leaf) =  1 POL(concat(x1, x2)) =  x1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`           →DP Problem 28`
`             ↳Nar`
`             ...`
`               →DP Problem 33`
`                 ↳Polynomial Ordering`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pairs:

LESSLEAVES(cons(u, v), cons(cons(u'', cons(u''', v''')), z'')) -> LESSLEAVES(concat(u, v), cons(u'', cons(u''', concat(v''', z''))))
LESSLEAVES(cons(u, v), cons(cons(u'', leaf), z'')) -> LESSLEAVES(concat(u, v), cons(u'', z''))
LESSLEAVES(cons(cons(u''', v'''), v0), cons(cons(u'', v''), z')) -> LESSLEAVES(cons(u''', concat(v''', v0)), cons(u'', concat(v'', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pairs can be strictly oriented:

LESSLEAVES(cons(u, v), cons(cons(u'', cons(u''', v''')), z'')) -> LESSLEAVES(concat(u, v), cons(u'', cons(u''', concat(v''', z''))))
LESSLEAVES(cons(u, v), cons(cons(u'', leaf), z'')) -> LESSLEAVES(concat(u, v), cons(u'', z''))
LESSLEAVES(cons(cons(u''', v'''), v0), cons(cons(u'', v''), z')) -> LESSLEAVES(cons(u''', concat(v''', v0)), cons(u'', concat(v'', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  1 + x1 + x2 POL(LESS_LEAVES(x1, x2)) =  x1 POL(leaf) =  0 POL(concat(x1, x2)) =  x1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`           →DP Problem 28`
`             ↳Nar`
`             ...`
`               →DP Problem 34`
`                 ↳Dependency Graph`
`       →DP Problem 7`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Narrowing Transformation`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

two new Dependency Pairs are created:

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 35`
`             ↳Narrowing Transformation`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

two new Dependency Pairs are created:

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 35`
`             ↳Nar`
`             ...`
`               →DP Problem 36`
`                 ↳Rewriting Transformation`

Dependency Pairs:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

one new Dependency Pair is created:

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 35`
`             ↳Nar`
`             ...`
`               →DP Problem 37`
`                 ↳Polynomial Ordering`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

reverse(nil) -> nil
app(nil, y) -> y

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(reverse(x1)) =  x1 POL(SHUFFLE(x1)) =  1 + x1 POL(nil) =  0 POL(app(x1, x2)) =  x1 + x2 POL(add(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳FwdInst`
`       →DP Problem 3`
`         ↳FwdInst`
`       →DP Problem 4`
`         ↳Nar`
`       →DP Problem 5`
`         ↳FwdInst`
`       →DP Problem 6`
`         ↳Nar`
`       →DP Problem 7`
`         ↳Nar`
`           →DP Problem 35`
`             ↳Nar`
`             ...`
`               →DP Problem 38`
`                 ↳Dependency Graph`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:10 minutes