Term Rewriting System R:
[x, y, n, u, v, w, z]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
APP(add(n, x), y) -> APP(x, y)
REVERSE(add(n, x)) -> APP(reverse(x), add(n, nil))
REVERSE(add(n, x)) -> REVERSE(x)
SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))
SHUFFLE(add(n, x)) -> REVERSE(x)
CONCAT(cons(u, v), y) -> CONCAT(v, y)
LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(u, v)
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(w, z)

Furthermore, R contains seven SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x), s(y)) -> MINUS(x, y)
one new Dependency Pair is created:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 8
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
one new Dependency Pair is created:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 8
FwdInst
             ...
               →DP Problem 9
Polynomial Ordering
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MINUS(x1, x2))=  1 + x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 8
FwdInst
             ...
               →DP Problem 10
Dependency Graph
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

APP(add(n, x), y) -> APP(x, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

APP(add(n, x), y) -> APP(x, y)
one new Dependency Pair is created:

APP(add(n, add(n'', x'')), y'') -> APP(add(n'', x''), y'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 11
Forward Instantiation Transformation
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

APP(add(n, add(n'', x'')), y'') -> APP(add(n'', x''), y'')


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

APP(add(n, add(n'', x'')), y'') -> APP(add(n'', x''), y'')
one new Dependency Pair is created:

APP(add(n, add(n'''', add(n''''', x''''))), y'''') -> APP(add(n'''', add(n''''', x'''')), y'''')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 11
FwdInst
             ...
               →DP Problem 12
Polynomial Ordering
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

APP(add(n, add(n'''', add(n''''', x''''))), y'''') -> APP(add(n'''', add(n''''', x'''')), y'''')


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(add(n, add(n'''', add(n''''', x''''))), y'''') -> APP(add(n'''', add(n''''', x'''')), y'''')


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(APP(x1, x2))=  1 + x1  
  POL(add(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 11
FwdInst
             ...
               →DP Problem 13
Dependency Graph
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

CONCAT(cons(u, v), y) -> CONCAT(v, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

CONCAT(cons(u, v), y) -> CONCAT(v, y)
one new Dependency Pair is created:

CONCAT(cons(u, cons(u'', v'')), y'') -> CONCAT(cons(u'', v''), y'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
           →DP Problem 14
Forward Instantiation Transformation
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

CONCAT(cons(u, cons(u'', v'')), y'') -> CONCAT(cons(u'', v''), y'')


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

CONCAT(cons(u, cons(u'', v'')), y'') -> CONCAT(cons(u'', v''), y'')
one new Dependency Pair is created:

CONCAT(cons(u, cons(u''0, cons(u'''', v''''))), y'''') -> CONCAT(cons(u''0, cons(u'''', v'''')), y'''')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
           →DP Problem 14
FwdInst
             ...
               →DP Problem 15
Polynomial Ordering
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

CONCAT(cons(u, cons(u''0, cons(u'''', v''''))), y'''') -> CONCAT(cons(u''0, cons(u'''', v'''')), y'''')


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONCAT(cons(u, cons(u''0, cons(u'''', v''''))), y'''') -> CONCAT(cons(u''0, cons(u'''', v'''')), y'''')


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x2  
  POL(CONCAT(x1, x2))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
           →DP Problem 14
FwdInst
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Narrowing Transformation
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
two new Dependency Pairs are created:

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
           →DP Problem 17
Forward Instantiation Transformation
           →DP Problem 18
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
one new Dependency Pair is created:

QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
           →DP Problem 17
FwdInst
             ...
               →DP Problem 19
Polynomial Ordering
           →DP Problem 18
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(QUOT(x1, x2))=  1 + x1  
  POL(0)=  0  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
           →DP Problem 17
FwdInst
             ...
               →DP Problem 22
Dependency Graph
           →DP Problem 18
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
           →DP Problem 17
FwdInst
           →DP Problem 18
Narrowing Transformation
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
two new Dependency Pairs are created:

QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
           →DP Problem 17
FwdInst
           →DP Problem 18
Nar
             ...
               →DP Problem 20
Polynomial Ordering
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(QUOT(x1, x2))=  1 + x1  
  POL(0)=  0  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
           →DP Problem 17
FwdInst
           →DP Problem 18
Nar
             ...
               →DP Problem 21
Polynomial Ordering
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))


Additionally, the following usable rules for innermost can be oriented:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(QUOT(x1, x2))=  1 + x1  
  POL(0)=  1  
  POL(minus(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
Forward Instantiation Transformation
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

REVERSE(add(n, x)) -> REVERSE(x)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REVERSE(add(n, x)) -> REVERSE(x)
one new Dependency Pair is created:

REVERSE(add(n, add(n'', x''))) -> REVERSE(add(n'', x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
           →DP Problem 25
Forward Instantiation Transformation
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

REVERSE(add(n, add(n'', x''))) -> REVERSE(add(n'', x''))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REVERSE(add(n, add(n'', x''))) -> REVERSE(add(n'', x''))
one new Dependency Pair is created:

REVERSE(add(n, add(n'''', add(n''''', x'''')))) -> REVERSE(add(n'''', add(n''''', x'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
           →DP Problem 25
FwdInst
             ...
               →DP Problem 26
Polynomial Ordering
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:

REVERSE(add(n, add(n'''', add(n''''', x'''')))) -> REVERSE(add(n'''', add(n''''', x'''')))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

REVERSE(add(n, add(n'''', add(n''''', x'''')))) -> REVERSE(add(n'''', add(n''''', x'''')))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(REVERSE(x1))=  1 + x1  
  POL(add(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
           →DP Problem 25
FwdInst
             ...
               →DP Problem 27
Dependency Graph
       →DP Problem 6
Nar
       →DP Problem 7
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Narrowing Transformation
       →DP Problem 7
Nar


Dependency Pair:

LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))
four new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(w, z)) -> LESSLEAVES(v', concat(w, z))
LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
           →DP Problem 28
Narrowing Transformation
       →DP Problem 7
Nar


Dependency Pairs:

LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(w, z)) -> LESSLEAVES(v', concat(w, z))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(leaf, v'), cons(w, z)) -> LESSLEAVES(v', concat(w, z))
two new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
           →DP Problem 28
Nar
             ...
               →DP Problem 29
Narrowing Transformation
       →DP Problem 7
Nar


Dependency Pairs:

LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(cons(u'', v''), v0), cons(w, z)) -> LESSLEAVES(cons(u'', concat(v'', v0)), concat(w, z))
four new Dependency Pairs are created:

LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
           →DP Problem 28
Nar
             ...
               →DP Problem 30
Narrowing Transformation
       →DP Problem 7
Nar


Dependency Pairs:

LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(u, v), cons(leaf, z')) -> LESSLEAVES(concat(u, v), z')
two new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
           →DP Problem 28
Nar
             ...
               →DP Problem 31
Narrowing Transformation
       →DP Problem 7
Nar


Dependency Pairs:

LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

LESSLEAVES(cons(u, v), cons(cons(u'', v''), z')) -> LESSLEAVES(concat(u, v), cons(u'', concat(v'', z')))
four new Dependency Pairs are created:

LESSLEAVES(cons(leaf, v'), cons(cons(u'', v''), z')) -> LESSLEAVES(v', cons(u'', concat(v'', z')))
LESSLEAVES(cons(cons(u''', v'''), v0), cons(cons(u'', v''), z')) -> LESSLEAVES(cons(u''', concat(v''', v0)), cons(u'', concat(v'', z')))
LESSLEAVES(cons(u, v), cons(cons(u'', leaf), z'')) -> LESSLEAVES(concat(u, v), cons(u'', z''))
LESSLEAVES(cons(u, v), cons(cons(u'', cons(u''', v''')), z'')) -> LESSLEAVES(concat(u, v), cons(u'', cons(u''', concat(v''', z''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
           →DP Problem 28
Nar
             ...
               →DP Problem 32
Polynomial Ordering
       →DP Problem 7
Nar


Dependency Pairs:

LESSLEAVES(cons(u, v), cons(cons(u'', cons(u''', v''')), z'')) -> LESSLEAVES(concat(u, v), cons(u'', cons(u''', concat(v''', z''))))
LESSLEAVES(cons(u, v), cons(cons(u'', leaf), z'')) -> LESSLEAVES(concat(u, v), cons(u'', z''))
LESSLEAVES(cons(cons(u''', v'''), v0), cons(cons(u'', v''), z')) -> LESSLEAVES(cons(u''', concat(v''', v0)), cons(u'', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(cons(u'', v''), z')) -> LESSLEAVES(v', cons(u'', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

LESSLEAVES(cons(u, v), cons(cons(u'', cons(u''', v''')), z'')) -> LESSLEAVES(concat(u, v), cons(u'', cons(u''', concat(v''', z''))))
LESSLEAVES(cons(u, v), cons(cons(u'', leaf), z'')) -> LESSLEAVES(concat(u, v), cons(u'', z''))
LESSLEAVES(cons(cons(u''', v'''), v0), cons(cons(u'', v''), z')) -> LESSLEAVES(cons(u''', concat(v''', v0)), cons(u'', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(cons(u'', v''), z')) -> LESSLEAVES(v', cons(u'', concat(v'', z')))
LESSLEAVES(cons(leaf, v'), cons(leaf, z')) -> LESSLEAVES(v', z')
LESSLEAVES(cons(cons(u'', v''), v0), cons(cons(u', v'), z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), cons(u', concat(v', z')))
LESSLEAVES(cons(cons(u'', v''), v0), cons(leaf, z')) -> LESSLEAVES(cons(u'', concat(v'', v0)), z')
LESSLEAVES(cons(cons(u'', cons(u', v')), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', cons(u', concat(v', v0'))), concat(w, z))
LESSLEAVES(cons(cons(u'', leaf), v0'), cons(w, z)) -> LESSLEAVES(cons(u'', v0'), concat(w, z))
LESSLEAVES(cons(leaf, v'), cons(cons(u', v''), z')) -> LESSLEAVES(v', cons(u', concat(v'', z')))


Additionally, the following usable rules for innermost can be oriented:

concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(LESS_LEAVES(x1, x2))=  x1  
  POL(leaf)=  0  
  POL(concat(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
           →DP Problem 28
Nar
             ...
               →DP Problem 33
Dependency Graph
       →DP Problem 7
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Narrowing Transformation


Dependency Pair:

SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))
two new Dependency Pairs are created:

SHUFFLE(add(n, nil)) -> SHUFFLE(nil)
SHUFFLE(add(n, add(n'', x''))) -> SHUFFLE(app(reverse(x''), add(n'', nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar
           →DP Problem 34
Narrowing Transformation


Dependency Pair:

SHUFFLE(add(n, add(n'', x''))) -> SHUFFLE(app(reverse(x''), add(n'', nil)))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SHUFFLE(add(n, add(n'', x''))) -> SHUFFLE(app(reverse(x''), add(n'', nil)))
two new Dependency Pairs are created:

SHUFFLE(add(n, add(n'', nil))) -> SHUFFLE(app(nil, add(n'', nil)))
SHUFFLE(add(n, add(n'', add(n''', x')))) -> SHUFFLE(app(app(reverse(x'), add(n''', nil)), add(n'', nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar
           →DP Problem 34
Nar
             ...
               →DP Problem 35
Rewriting Transformation


Dependency Pairs:

SHUFFLE(add(n, add(n'', add(n''', x')))) -> SHUFFLE(app(app(reverse(x'), add(n''', nil)), add(n'', nil)))
SHUFFLE(add(n, add(n'', nil))) -> SHUFFLE(app(nil, add(n'', nil)))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

SHUFFLE(add(n, add(n'', nil))) -> SHUFFLE(app(nil, add(n'', nil)))
one new Dependency Pair is created:

SHUFFLE(add(n, add(n'', nil))) -> SHUFFLE(add(n'', nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar
           →DP Problem 34
Nar
             ...
               →DP Problem 36
Polynomial Ordering


Dependency Pair:

SHUFFLE(add(n, add(n'', add(n''', x')))) -> SHUFFLE(app(app(reverse(x'), add(n''', nil)), add(n'', nil)))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SHUFFLE(add(n, add(n'', add(n''', x')))) -> SHUFFLE(app(app(reverse(x'), add(n''', nil)), add(n'', nil)))


Additionally, the following usable rules for innermost can be oriented:

app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(reverse(x1))=  x1  
  POL(SHUFFLE(x1))=  1 + x1  
  POL(nil)=  0  
  POL(app(x1, x2))=  x1 + x2  
  POL(add(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
FwdInst
       →DP Problem 4
Nar
       →DP Problem 5
FwdInst
       →DP Problem 6
Nar
       →DP Problem 7
Nar
           →DP Problem 34
Nar
             ...
               →DP Problem 37
Dependency Graph


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:09 minutes