R
↳Dependency Pair Analysis
F(f(x)) -> F(c(f(x)))
F(f(x)) -> F(d(f(x)))
G(c(h(0))) -> G(d(1))
G(c(1)) -> G(d(h(0)))
G(h(x)) -> G(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
G(h(x)) -> G(x)
f(f(x)) -> f(c(f(x)))
f(f(x)) -> f(d(f(x)))
g(c(x)) -> x
g(d(x)) -> x
g(c(h(0))) -> g(d(1))
g(c(1)) -> g(d(h(0)))
g(h(x)) -> g(x)
innermost
one new Dependency Pair is created:
G(h(x)) -> G(x)
G(h(h(x''))) -> G(h(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
G(h(h(x''))) -> G(h(x''))
f(f(x)) -> f(c(f(x)))
f(f(x)) -> f(d(f(x)))
g(c(x)) -> x
g(d(x)) -> x
g(c(h(0))) -> g(d(1))
g(c(1)) -> g(d(h(0)))
g(h(x)) -> g(x)
innermost
one new Dependency Pair is created:
G(h(h(x''))) -> G(h(x''))
G(h(h(h(x'''')))) -> G(h(h(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Polynomial Ordering
G(h(h(h(x'''')))) -> G(h(h(x'''')))
f(f(x)) -> f(c(f(x)))
f(f(x)) -> f(d(f(x)))
g(c(x)) -> x
g(d(x)) -> x
g(c(h(0))) -> g(d(1))
g(c(1)) -> g(d(h(0)))
g(h(x)) -> g(x)
innermost
G(h(h(h(x'''')))) -> G(h(h(x'''')))
POL(G(x1)) = 1 + x1 POL(h(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
f(f(x)) -> f(c(f(x)))
f(f(x)) -> f(d(f(x)))
g(c(x)) -> x
g(d(x)) -> x
g(c(h(0))) -> g(d(1))
g(c(1)) -> g(d(h(0)))
g(h(x)) -> g(x)
innermost