R
↳Dependency Pair Analysis
F(c(s(x), y)) -> F(c(x, s(y)))
F(c(s(x), s(y))) -> G(c(x, y))
G(c(x, s(y))) -> G(c(s(x), y))
G(c(s(x), s(y))) -> F(c(x, y))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
G(c(s(x), s(y))) -> F(c(x, y))
G(c(x, s(y))) -> G(c(s(x), y))
F(c(s(x), s(y))) -> G(c(x, y))
F(c(s(x), y)) -> F(c(x, s(y)))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
one new Dependency Pair is created:
F(c(s(x), y)) -> F(c(x, s(y)))
F(c(s(s(x'')), y'')) -> F(c(s(x''), s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
F(c(s(s(x'')), y'')) -> F(c(s(x''), s(y'')))
G(c(x, s(y))) -> G(c(s(x), y))
F(c(s(x), s(y))) -> G(c(x, y))
G(c(s(x), s(y))) -> F(c(x, y))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
two new Dependency Pairs are created:
F(c(s(x), s(y))) -> G(c(x, y))
F(c(s(x''), s(s(y'')))) -> G(c(x'', s(y'')))
F(c(s(s(x'')), s(s(y'')))) -> G(c(s(x''), s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
F(c(s(s(x'')), s(s(y'')))) -> G(c(s(x''), s(y'')))
G(c(s(x), s(y))) -> F(c(x, y))
G(c(x, s(y))) -> G(c(s(x), y))
F(c(s(x''), s(s(y'')))) -> G(c(x'', s(y'')))
F(c(s(s(x'')), y'')) -> F(c(s(x''), s(y'')))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
one new Dependency Pair is created:
G(c(x, s(y))) -> G(c(s(x), y))
G(c(x'', s(s(y'')))) -> G(c(s(x''), s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
G(c(x'', s(s(y'')))) -> G(c(s(x''), s(y'')))
F(c(s(x''), s(s(y'')))) -> G(c(x'', s(y'')))
F(c(s(s(x'')), y'')) -> F(c(s(x''), s(y'')))
G(c(s(x), s(y))) -> F(c(x, y))
F(c(s(s(x'')), s(s(y'')))) -> G(c(s(x''), s(y'')))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
three new Dependency Pairs are created:
G(c(s(x), s(y))) -> F(c(x, y))
G(c(s(s(s(x''''))), s(y'))) -> F(c(s(s(x'''')), y'))
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(x'')), s(s(y'')))) -> G(c(s(x''), s(y'')))
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(x''), s(s(y'')))) -> G(c(x'', s(y'')))
F(c(s(s(x'')), y'')) -> F(c(s(x''), s(y'')))
G(c(s(s(s(x''''))), s(y'))) -> F(c(s(s(x'''')), y'))
G(c(x'', s(s(y'')))) -> G(c(s(x''), s(y'')))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
three new Dependency Pairs are created:
F(c(s(s(x'')), y'')) -> F(c(s(x''), s(y'')))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(x'')), s(s(y'')))) -> G(c(s(x''), s(y'')))
G(c(s(s(s(x''''))), s(y'))) -> F(c(s(s(x'''')), y'))
G(c(x'', s(s(y'')))) -> G(c(s(x''), s(y'')))
F(c(s(x''), s(s(y'')))) -> G(c(x'', s(y'')))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
four new Dependency Pairs are created:
F(c(s(x''), s(s(y'')))) -> G(c(x'', s(y'')))
F(c(s(x''''), s(s(s(y''''))))) -> G(c(x'''', s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(x''''), s(s(s(y''''))))) -> G(c(x'''', s(s(y''''))))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
G(c(s(s(s(x''''))), s(y'))) -> F(c(s(s(x'''')), y'))
G(c(x'', s(s(y'')))) -> G(c(s(x''), s(y'')))
F(c(s(s(x'')), s(s(y'')))) -> G(c(s(x''), s(y'')))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
four new Dependency Pairs are created:
F(c(s(s(x'')), s(s(y'')))) -> G(c(s(x''), s(y'')))
F(c(s(s(x'''')), s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
F(c(s(s(x'''')), s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(x''''), s(s(s(y''''))))) -> G(c(x'''', s(s(y''''))))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
G(c(s(s(s(x''''))), s(y'))) -> F(c(s(s(x'''')), y'))
G(c(x'', s(s(y'')))) -> G(c(s(x''), s(y'')))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
four new Dependency Pairs are created:
G(c(x'', s(s(y'')))) -> G(c(s(x''), s(y'')))
G(c(x'''', s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
G(c(s(s(x'''''')), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(x''''''), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
F(c(s(s(x'''')), s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(x''''''), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(x'''', s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(x''''), s(s(s(y''''))))) -> G(c(x'''', s(s(y''''))))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
G(c(s(s(s(x''''))), s(y'))) -> F(c(s(s(x'''')), y'))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
seven new Dependency Pairs are created:
G(c(s(s(s(x''''))), s(y'))) -> F(c(s(s(x'''')), y'))
G(c(s(s(s(s(x'''''')))), s(y''))) -> F(c(s(s(s(x''''''))), y''))
G(c(s(s(s(x''''''))), s(s(y'''''')))) -> F(c(s(s(x'''''')), s(y'''''')))
G(c(s(s(s(s(x'''''')))), s(s(y'''''')))) -> F(c(s(s(s(x''''''))), s(y'''''')))
G(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> F(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(y''''''))))) -> F(c(s(s(s(s(x'''''''')))), s(s(y''''''))))
G(c(s(s(s(s(x'''''''')))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(x''''''''))), s(s(s(s(y''''''''))))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(s(x'''''''')))), s(s(s(s(y''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
G(c(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(s(x'''''''')))), s(s(s(s(y''''''''))))))
G(c(s(s(s(s(x'''''''')))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(x''''''''))), s(s(s(s(y''''''''))))))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(y''''''))))) -> F(c(s(s(s(s(x'''''''')))), s(s(y''''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> F(c(s(s(x'''''')), s(s(s(y'''''')))))
F(c(s(s(x'''')), s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
G(c(s(s(s(s(x'''''')))), s(s(y'''''')))) -> F(c(s(s(s(x''''''))), s(y'''''')))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(s(s(x''''''))), s(s(y'''''')))) -> F(c(s(s(x'''''')), s(y'''''')))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(s(x'''''')))), s(y''))) -> F(c(s(s(s(x''''''))), y''))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(x''''''), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(x'''', s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(x''''), s(s(s(y''''))))) -> G(c(x'''', s(s(y''''))))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
seven new Dependency Pairs are created:
G(c(s(s(x'''')), s(s(s(y''''))))) -> F(c(s(x''''), s(s(y''''))))
G(c(s(s(s(s(x'''''')))), s(s(s(y''''''))))) -> F(c(s(s(s(x''''''))), s(s(y''''''))))
G(c(s(s(s(x''''''))), s(s(s(y''''''))))) -> F(c(s(s(x'''''')), s(s(y''''''))))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> F(c(s(x''''''), s(s(s(y'''''')))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(y''''''))))) -> F(c(s(s(s(s(x'''''''')))), s(s(y''''''))))
G(c(s(s(s(s(x'''''''')))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(x''''''''))), s(s(s(s(y''''''''))))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(s(x'''''''')))), s(s(s(s(y''''''''))))))
G(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> F(c(s(s(x'''''')), s(s(s(y'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
G(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> F(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(s(x'''''''')))), s(s(s(s(y''''''''))))))
G(c(s(s(s(s(x'''''''')))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(x''''''''))), s(s(s(s(y''''''''))))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(y''''''))))) -> F(c(s(s(s(s(x'''''''')))), s(s(y''''''))))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> F(c(s(x''''''), s(s(s(y'''''')))))
G(c(s(s(s(x''''''))), s(s(s(y''''''))))) -> F(c(s(s(x'''''')), s(s(y''''''))))
G(c(s(s(s(s(x'''''')))), s(s(s(y''''''))))) -> F(c(s(s(s(x''''''))), s(s(y''''''))))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(s(s(s(x'''''''')))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(x''''''''))), s(s(s(s(y''''''''))))))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(y''''''))))) -> F(c(s(s(s(s(x'''''''')))), s(s(y''''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> F(c(s(s(x'''''')), s(s(s(y'''''')))))
F(c(s(s(x'''')), s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
G(c(s(s(s(s(x'''''')))), s(s(y'''''')))) -> F(c(s(s(s(x''''''))), s(y'''''')))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(s(s(x''''''))), s(s(y'''''')))) -> F(c(s(s(x'''''')), s(y'''''')))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(s(x'''''')))), s(y''))) -> F(c(s(s(s(x''''''))), y''))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(x''''''), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(x'''', s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(x''''), s(s(s(y''''))))) -> G(c(x'''', s(s(y''''))))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(s(x'''''''')))), s(s(s(s(y''''''''))))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
G(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> F(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(s(x'''''''')))), s(s(s(s(y''''''''))))))
G(c(s(s(s(s(x'''''''')))), s(s(s(s(s(y''''''''))))))) -> F(c(s(s(s(x''''''''))), s(s(s(s(y''''''''))))))
G(c(s(s(s(s(s(x''''''''))))), s(s(s(y''''''))))) -> F(c(s(s(s(s(x'''''''')))), s(s(y''''''))))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> F(c(s(x''''''), s(s(s(y'''''')))))
G(c(s(s(s(x''''''))), s(s(s(y''''''))))) -> F(c(s(s(x'''''')), s(s(y''''''))))
G(c(s(s(s(s(x'''''')))), s(s(s(y''''''))))) -> F(c(s(s(s(x''''''))), s(s(y''''''))))
F(c(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
F(c(s(s(s(x''''''))), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
F(c(s(s(s(s(x'''''')))), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
F(c(s(s(x'''')), s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
G(c(s(s(s(s(x'''''')))), s(s(y'''''')))) -> F(c(s(s(s(x''''''))), s(y'''''')))
G(c(s(s(s(x''''''))), s(s(y'''''')))) -> F(c(s(s(x'''''')), s(y'''''')))
G(c(s(s(s(s(x'''''')))), s(y''))) -> F(c(s(s(s(x''''''))), y''))
G(c(s(s(s(x''''))), s(s(s(y''''))))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(x''''), s(s(s(y''''))))) -> G(c(x'''', s(s(y''''))))
POL(c(x1, x2)) = x1 + x2 POL(G(x1)) = x1 POL(s(x1)) = 1 + x1 POL(F(x1)) = x1
F(x1) -> F(x1)
G(x1) -> G(x1)
c(x1, x2) -> c(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
G(c(s(x''''''), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(x'''', s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 13
↳Argument Filtering and Ordering
G(c(s(x''''''), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(x'''', s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
G(c(s(x''''''), s(s(s(s(y'''''')))))) -> G(c(s(s(x'''''')), s(s(s(y'''''')))))
G(c(s(s(x'''''')), s(s(y'''')))) -> G(c(s(s(s(x''''''))), s(y'''')))
G(c(x'''', s(s(s(y''''))))) -> G(c(s(x''''), s(s(y''''))))
G(c(s(s(x'''''')), s(s(s(s(y'''''')))))) -> G(c(s(s(s(x''''''))), s(s(s(y'''''')))))
POL(G(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
G(x1) -> G(x1)
c(x1, x2) -> x2
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 15
↳Dependency Graph
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 14
↳Argument Filtering and Ordering
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
f(c(s(x), y)) -> f(c(x, s(y)))
f(c(s(x), s(y))) -> g(c(x, y))
g(c(x, s(y))) -> g(c(s(x), y))
g(c(s(x), s(y))) -> f(c(x, y))
innermost
F(c(s(s(x'''')), s(y''''))) -> F(c(s(x''''), s(s(y''''))))
F(c(s(s(s(x''''))), y'''')) -> F(c(s(s(x'''')), s(y'''')))
F(c(s(s(s(x''''))), s(y''''))) -> F(c(s(s(x'''')), s(s(y''''))))
POL(s(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
F(x1) -> F(x1)
c(x1, x2) -> x1
s(x1) -> s(x1)