Term Rewriting System R:
[x, y]
f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(x, c(y)) -> F(x, s(f(y, y)))
F(x, c(y)) -> F(y, y)
F(s(x), y) -> F(x, s(c(y)))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Instantiation Transformation
       →DP Problem 2
Inst


Dependency Pair:

F(s(x), y) -> F(x, s(c(y)))


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(s(x), y) -> F(x, s(c(y)))
one new Dependency Pair is created:

F(s(x''), s(c(y''))) -> F(x'', s(c(s(c(y'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 3
Instantiation Transformation
       →DP Problem 2
Inst


Dependency Pair:

F(s(x''), s(c(y''))) -> F(x'', s(c(s(c(y'')))))


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(s(x''), s(c(y''))) -> F(x'', s(c(s(c(y'')))))
one new Dependency Pair is created:

F(s(x''''), s(c(s(c(y''''))))) -> F(x'''', s(c(s(c(s(c(y'''')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 3
Inst
             ...
               →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 2
Inst


Dependency Pair:

F(s(x''''), s(c(s(c(y''''))))) -> F(x'''', s(c(s(c(s(c(y'''')))))))


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(s(x''''), s(c(s(c(y''''))))) -> F(x'''', s(c(s(c(s(c(y'''')))))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(c)=  0  
  POL(s(x1))=  1 + x1  
  POL(F(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
s(x1) -> s(x1)
c(x1) -> c


   R
DPs
       →DP Problem 1
Inst
           →DP Problem 3
Inst
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
Inst


Dependency Pair:


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Inst
       →DP Problem 2
Instantiation Transformation


Dependency Pair:

F(x, c(y)) -> F(y, y)


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(x, c(y)) -> F(y, y)
one new Dependency Pair is created:

F(c(y''), c(y'')) -> F(y'', y'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
       →DP Problem 2
Inst
           →DP Problem 6
Forward Instantiation Transformation


Dependency Pair:

F(c(y''), c(y'')) -> F(y'', y'')


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(c(y''), c(y'')) -> F(y'', y'')
one new Dependency Pair is created:

F(c(c(y''''')), c(c(y'''''))) -> F(c(y'''''), c(y'''''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
       →DP Problem 2
Inst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 7
Argument Filtering and Ordering


Dependency Pair:

F(c(c(y''''')), c(c(y'''''))) -> F(c(y'''''), c(y'''''))


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(c(c(y''''')), c(c(y'''''))) -> F(c(y'''''), c(y'''''))


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(c(x1))=  1 + x1  
  POL(F(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
c(x1) -> c(x1)


   R
DPs
       →DP Problem 1
Inst
       →DP Problem 2
Inst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


f(x, c(y)) -> f(x, s(f(y, y)))
f(s(x), y) -> f(x, s(c(y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes