Term Rewriting System R:
[x]
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

HALF(s(s(x))) -> HALF(x)
LASTBIT(s(s(x))) -> LASTBIT(x)
CONV(s(x)) -> CONV(half(s(x)))
CONV(s(x)) -> HALF(s(x))
CONV(s(x)) -> LASTBIT(s(x))

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:

HALF(s(s(x))) -> HALF(x)


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

HALF(s(s(x))) -> HALF(x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
HALF(x1) -> HALF(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pair:

LASTBIT(s(s(x))) -> LASTBIT(x)


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LASTBIT(s(s(x))) -> LASTBIT(x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
LASTBIT(x1) -> LASTBIT(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Narrowing Transformation


Dependency Pair:

CONV(s(x)) -> CONV(half(s(x)))


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

CONV(s(x)) -> CONV(half(s(x)))
two new Dependency Pairs are created:

CONV(s(0)) -> CONV(0)
CONV(s(s(x''))) -> CONV(s(half(x'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 6
Argument Filtering and Ordering


Dependency Pair:

CONV(s(s(x''))) -> CONV(s(half(x'')))


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONV(s(s(x''))) -> CONV(s(half(x'')))


The following usable rules for innermost w.r.t. to the AFS can be oriented:

half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
s > half

resulting in one new DP problem.
Used Argument Filtering System:
CONV(x1) -> CONV(x1)
s(x1) -> s(x1)
half(x1) -> half(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 6
AFS
             ...
               →DP Problem 7
Dependency Graph


Dependency Pair:


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil, 0)
conv(s(x)) -> cons(conv(half(s(x))), lastbit(s(x)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes