R
↳Dependency Pair Analysis
FAC(s(x)) -> FAC(p(s(x)))
FAC(s(x)) -> P(s(x))
R
↳DPs
→DP Problem 1
↳Rewriting Transformation
FAC(s(x)) -> FAC(p(s(x)))
p(s(x)) -> x
fac(0) -> s(0)
fac(s(x)) -> times(s(x), fac(p(s(x))))
innermost
one new Dependency Pair is created:
FAC(s(x)) -> FAC(p(s(x)))
FAC(s(x)) -> FAC(x)
R
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳Forward Instantiation Transformation
FAC(s(x)) -> FAC(x)
p(s(x)) -> x
fac(0) -> s(0)
fac(s(x)) -> times(s(x), fac(p(s(x))))
innermost
one new Dependency Pair is created:
FAC(s(x)) -> FAC(x)
FAC(s(s(x''))) -> FAC(s(x''))
R
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Argument Filtering and Ordering
FAC(s(s(x''))) -> FAC(s(x''))
p(s(x)) -> x
fac(0) -> s(0)
fac(s(x)) -> times(s(x), fac(p(s(x))))
innermost
FAC(s(s(x''))) -> FAC(s(x''))
POL(FAC(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
FAC(x1) -> FAC(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
p(s(x)) -> x
fac(0) -> s(0)
fac(s(x)) -> times(s(x), fac(p(s(x))))
innermost