R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
PLUS(plus(x, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), plus(x, s(0)))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
one new Dependency Pair is created:
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
one new Dependency Pair is created:
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
POL(MINUS(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳FwdInst
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
two new Dependency Pairs are created:
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 8
↳Nar
→DP Problem 3
↳FwdInst
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
one new Dependency Pair is created:
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Polynomial Ordering
→DP Problem 8
↳Nar
→DP Problem 3
↳FwdInst
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
POL(QUOT(x1, x2)) = 1 + x1 POL(0) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 8
↳Nar
→DP Problem 3
↳FwdInst
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳FwdInst
→DP Problem 8
↳Narrowing Transformation
→DP Problem 3
↳FwdInst
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳FwdInst
→DP Problem 8
↳Nar
...
→DP Problem 10
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
POL(QUOT(x1, x2)) = 1 + x1 POL(0) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳FwdInst
→DP Problem 8
↳Nar
...
→DP Problem 11
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
POL(QUOT(x1, x2)) = 1 + x1 + x2 POL(0) = 1 POL(minus(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Forward Instantiation Transformation
PLUS(s(x), y) -> PLUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
one new Dependency Pair is created:
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 15
↳Forward Instantiation Transformation
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
one new Dependency Pair is created:
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 15
↳FwdInst
...
→DP Problem 16
↳Polynomial Ordering
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
POL(PLUS(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳FwdInst
→DP Problem 15
↳FwdInst
...
→DP Problem 17
↳Dependency Graph
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
innermost