Term Rewriting System R:
[x, y, z]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(minus(x, y), z) -> PLUS(y, z)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Forward Instantiation Transformation`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

PLUS(s(x), y) -> PLUS(x, y)
one new Dependency Pair is created:

PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 4`
`             ↳Forward Instantiation Transformation`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
one new Dependency Pair is created:

PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 4`
`             ↳FwdInst`
`             ...`
`               →DP Problem 5`
`                 ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

The following dependency pair can be strictly oriented:

PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(PLUS(x1, x2)) =  1 + x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 4`
`             ↳FwdInst`
`             ...`
`               →DP Problem 6`
`                 ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Narrowing Transformation`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pairs:

MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(s(x), s(y)) -> MINUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
one new Dependency Pair is created:

MINUS(minus(x, s(x'')), z') -> MINUS(x, s(plus(x'', z')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`           →DP Problem 7`
`             ↳Forward Instantiation Transformation`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(x), s(y)) -> MINUS(x, y)
one new Dependency Pair is created:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`           →DP Problem 7`
`             ↳FwdInst`
`             ...`
`               →DP Problem 8`
`                 ↳Forward Instantiation Transformation`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
one new Dependency Pair is created:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`           →DP Problem 7`
`             ↳FwdInst`
`             ...`
`               →DP Problem 9`
`                 ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

The following dependency pair can be strictly oriented:

MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1, x2)) =  1 + x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`           →DP Problem 7`
`             ↳FwdInst`
`             ...`
`               →DP Problem 10`
`                 ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Narrowing Transformation`

Dependency Pair:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
three new Dependency Pairs are created:

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 11`
`             ↳Narrowing Transformation`

Dependency Pairs:

QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(x'')), s(s(y''))) -> QUOT(minus(x'', y''), s(s(y'')))
three new Dependency Pairs are created:

QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 11`
`             ↳Nar`
`             ...`
`               →DP Problem 12`
`                 ↳Narrowing Transformation`

Dependency Pairs:

QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(minus(x'', y'')), s(y0)) -> QUOT(minus(x'', plus(y'', y0)), s(y0))
one new Dependency Pair is created:

QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 11`
`             ↳Nar`
`             ...`
`               →DP Problem 13`
`                 ↳Forward Instantiation Transformation`

Dependency Pairs:

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
two new Dependency Pairs are created:

QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 11`
`             ↳Nar`
`             ...`
`               →DP Problem 14`
`                 ↳Polynomial Ordering`

Dependency Pairs:

QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

The following dependency pairs can be strictly oriented:

QUOT(s(s(minus(x'''', s(x'0')))), s(0)) -> QUOT(s(minus(x'''', s(x'0'))), s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
QUOT(s(s(s(x'))), s(s(s(y')))) -> QUOT(minus(x', y'), s(s(s(y'))))
QUOT(s(s(minus(x', y'))), s(s(y'''))) -> QUOT(minus(x', plus(y', y''')), s(s(y''')))
QUOT(s(s(x''')), s(s(0))) -> QUOT(x''', s(s(0)))
QUOT(s(minus(x'', s(x'))), s(y0')) -> QUOT(minus(x'', s(plus(x', y0'))), s(y0'))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(plus(x1, x2)) =  1 + x1 POL(QUOT(x1, x2)) =  x1 + x2 POL(0) =  1 POL(minus(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Nar`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 11`
`             ↳Nar`
`             ...`
`               →DP Problem 15`
`                 ↳Dependency Graph`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:01 minutes