R
↳Dependency Pair Analysis
REV(cons(x, l)) -> REV1(x, l)
REV(cons(x, l)) -> REV2(x, l)
REV1(x, cons(y, l)) -> REV1(y, l)
REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l)))
REV2(x, cons(y, l)) -> REV2(y, l)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
REV1(x, cons(y, l)) -> REV1(y, l)
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV1(x, cons(y, l)) -> REV1(y, l)
REV1(x, cons(y0, cons(y'', l''))) -> REV1(y0, cons(y'', l''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
REV1(x, cons(y0, cons(y'', l''))) -> REV1(y0, cons(y'', l''))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV1(x, cons(y0, cons(y'', l''))) -> REV1(y0, cons(y'', l''))
REV1(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV1(y0'', cons(y''0, cons(y'''', l'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
REV1(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV1(y0'', cons(y''0, cons(y'''', l'''')))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
REV1(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV1(y0'', cons(y''0, cons(y'''', l'''')))
REV1(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
REV2(x, cons(y, l)) -> REV2(y, l)
REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l)))
REV(cons(x, l)) -> REV2(x, l)
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV(cons(x, l)) -> REV2(x, l)
REV(cons(x'', cons(y'', l''))) -> REV2(x'', cons(y'', l''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Narrowing Transformation
REV(cons(x'', cons(y'', l''))) -> REV2(x'', cons(y'', l''))
REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l)))
REV2(x, cons(y, l)) -> REV2(y, l)
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
two new Dependency Pairs are created:
REV2(x, cons(y, l)) -> REV(cons(x, rev2(y, l)))
REV2(x, cons(y', nil)) -> REV(cons(x, nil))
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, rev(cons(y0, rev2(y'', l'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Rewriting Transformation
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, rev(cons(y0, rev2(y'', l'')))))
REV2(x, cons(y, l)) -> REV2(y, l)
REV(cons(x'', cons(y'', l''))) -> REV2(x'', cons(y'', l''))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, rev(cons(y0, rev2(y'', l'')))))
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, cons(rev1(y0, rev2(y'', l'')), rev2(y0, rev2(y'', l'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Forward Instantiation Transformation
REV(cons(x'', cons(y'', l''))) -> REV2(x'', cons(y'', l''))
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, cons(rev1(y0, rev2(y'', l'')), rev2(y0, rev2(y'', l'')))))
REV2(x, cons(y, l)) -> REV2(y, l)
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
two new Dependency Pairs are created:
REV2(x, cons(y, l)) -> REV2(y, l)
REV2(x, cons(y0, cons(y'', l''))) -> REV2(y0, cons(y'', l''))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Forward Instantiation Transformation
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV2(x, cons(y0, cons(y'', l''))) -> REV2(y0, cons(y'', l''))
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, cons(rev1(y0, rev2(y'', l'')), rev2(y0, rev2(y'', l'')))))
REV(cons(x'', cons(y'', l''))) -> REV2(x'', cons(y'', l''))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
two new Dependency Pairs are created:
REV(cons(x'', cons(y'', l''))) -> REV2(x'', cons(y'', l''))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Forward Instantiation Transformation
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y'', l''))) -> REV2(y0, cons(y'', l''))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, cons(rev1(y0, rev2(y'', l'')), rev2(y0, rev2(y'', l'')))))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
two new Dependency Pairs are created:
REV2(x, cons(y0, cons(y'', l''))) -> REV2(y0, cons(y'', l''))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, cons(rev1(y0, rev2(y'', l'')), rev2(y0, rev2(y'', l'')))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
four new Dependency Pairs are created:
REV2(x, cons(y0, cons(y'', l''))) -> REV(cons(x, cons(rev1(y0, rev2(y'', l'')), rev2(y0, rev2(y'', l'')))))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, rev2(y''', nil)))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, rev2(y''', nil)), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev2(y''', cons(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, rev2(y''', nil)), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev2(y''', cons(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, rev2(y''', nil)))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, rev2(y''', nil)))))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev2(y''', cons(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, rev2(y''', nil)), rev2(y0, nil))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, rev2(y''', nil)), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev2(y''', cons(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, rev2(y''', nil)), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 15
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev2(y''', cons(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev2(y''', cons(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 16
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), nil)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 17
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev2(y''', cons(y', l'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 18
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev2(y''', cons(y', l'))))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), rev2(y0, nil))))
REV2(x, cons(y0, cons(y''', nil))) -> REV(cons(x, cons(rev1(y0, nil), nil)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 19
↳Rewriting Transformation
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev2(y''', cons(y', l'))))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, rev(cons(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 20
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev2(y''', cons(y', l'))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 21
↳Rewriting Transformation
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 22
↳Rewriting Transformation
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 23
↳Rewriting Transformation
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
one new Dependency Pair is created:
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, rev(cons(y''', rev2(y', l')))))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 24
↳Forward Instantiation Transformation
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
four new Dependency Pairs are created:
REV2(x, cons(y', cons(y0'', cons(y'''', l'''')))) -> REV2(y', cons(y0'', cons(y'''', l'''')))
REV2(x, cons(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))) -> REV2(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 25
↳Forward Instantiation Transformation
REV2(x, cons(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))) -> REV2(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))
REV2(x, cons(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
seven new Dependency Pairs are created:
REV(cons(x''', cons(y''0, cons(y'''', l'''')))) -> REV2(x''', cons(y''0, cons(y'''', l'''')))
REV(cons(x'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(x'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y''', l'''))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y''', l'''))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV(cons(x'''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV(cons(x'''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))) -> REV2(x'''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))
REV(cons(x'''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))) -> REV2(x'''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 26
↳Forward Instantiation Transformation
REV(cons(x'''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))) -> REV2(x'''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))
REV(cons(x'''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))) -> REV2(x'''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))
REV(cons(x'''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y''', l'''))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y''', l'''))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV(cons(x'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(x'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))) -> REV2(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost
seven new Dependency Pairs are created:
REV2(x, cons(y0'', cons(y''0, cons(y'''', l'''')))) -> REV2(y0'', cons(y''0, cons(y'''', l'''')))
REV2(x, cons(y0'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y0'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y0'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(y0'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y0''', cons(y''0', cons(y'''''', cons(y''', l'''))))) -> REV2(y0''', cons(y''0', cons(y'''''', cons(y''', l'''))))
REV2(x, cons(y0''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(y0''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV2(x, cons(y0''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(y0''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV2(x, cons(y0''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))) -> REV2(y0''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))
REV2(x, cons(y0''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))) -> REV2(y0''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Nar
...
→DP Problem 27
↳Remaining Obligation(s)
REV(cons(x'''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))) -> REV2(x'''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))
REV(cons(x'''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y''', l'''))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y''', l'''))))
REV(cons(x'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(x'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y0''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))) -> REV2(y0''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))
REV2(x, cons(y0''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))) -> REV2(y0''', cons(y''0', cons(y''''', cons(y'''''''', cons(y0'''''''', cons(y'''''''''', l''''''''''))))))
REV2(x, cons(y0''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(y0''', cons(y''0', cons(y''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV2(x, cons(y0''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))) -> REV2(y0''', cons(y''0', cons(y'''''', cons(y''''0'', cons(y'''''''', l'''''''')))))
REV2(x, cons(y0''', cons(y''0', cons(y'''''', cons(y''', l'''))))) -> REV2(y0''', cons(y''0', cons(y'''''', cons(y''', l'''))))
REV2(x, cons(y0'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(y0'''', cons(y''0', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y0'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y0'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))) -> REV2(y''', cons(y0''', cons(y'''''', cons(y''0, l'''))))
REV2(x, cons(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))) -> REV2(y'', cons(y0'''', cons(y'''''', cons(y0'''''', cons(y'''''''', l'''''''')))))
REV2(x, cons(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y'', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(y''', cons(y0'''', cons(y''''0, cons(y'''''', l''''''))))
REV(cons(x'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))) -> REV2(x'''', cons(y''0'', cons(y''''0, cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV(cons(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(x''', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV2(x, cons(y0, cons(y''', cons(y', l')))) -> REV(cons(x, cons(rev1(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l'))), rev2(y0, cons(rev1(y''', rev2(y', l')), rev2(y''', rev2(y', l')))))))
REV2(x, cons(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))) -> REV2(y0', cons(y'''', cons(y0'''', cons(y'''''', l''''''))))
REV(cons(x'''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))) -> REV2(x'''', cons(y''0'', cons(y'''''', cons(y'''''''', cons(y''0''', l'''''')))))
rev(nil) -> nil
rev(cons(x, l)) -> cons(rev1(x, l), rev2(x, l))
rev1(0, nil) -> 0
rev1(s(x), nil) -> s(x)
rev1(x, cons(y, l)) -> rev1(y, l)
rev2(x, nil) -> nil
rev2(x, cons(y, l)) -> rev(cons(x, rev2(y, l)))
innermost