Term Rewriting System R:
[x]
not(true) -> false
not(false) -> true
evenodd(x, 0) -> not(evenodd(x, s(0)))
evenodd(0, s(0)) -> false
evenodd(s(x), s(0)) -> evenodd(x, 0)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

EVENODD(x, 0) -> NOT(evenodd(x, s(0)))
EVENODD(x, 0) -> EVENODD(x, s(0))
EVENODD(s(x), s(0)) -> EVENODD(x, 0)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

EVENODD(s(x), s(0)) -> EVENODD(x, 0)
EVENODD(x, 0) -> EVENODD(x, s(0))


Rules:


not(true) -> false
not(false) -> true
evenodd(x, 0) -> not(evenodd(x, s(0)))
evenodd(0, s(0)) -> false
evenodd(s(x), s(0)) -> evenodd(x, 0)


Strategy:

innermost




The following dependency pair can be strictly oriented:

EVENODD(s(x), s(0)) -> EVENODD(x, 0)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
EVENODD(x1, x2) -> x1
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:

EVENODD(x, 0) -> EVENODD(x, s(0))


Rules:


not(true) -> false
not(false) -> true
evenodd(x, 0) -> not(evenodd(x, s(0)))
evenodd(0, s(0)) -> false
evenodd(s(x), s(0)) -> evenodd(x, 0)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes