Term Rewriting System R:
[x]
not(true) -> false
not(false) -> true
evenodd(x, 0) -> not(evenodd(x, s(0)))
evenodd(0, s(0)) -> false
evenodd(s(x), s(0)) -> evenodd(x, 0)
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
EVENODD(x, 0) -> NOT(evenodd(x, s(0)))
EVENODD(x, 0) -> EVENODD(x, s(0))
EVENODD(s(x), s(0)) -> EVENODD(x, 0)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
Dependency Pairs:
EVENODD(s(x), s(0)) -> EVENODD(x, 0)
EVENODD(x, 0) -> EVENODD(x, s(0))
Rules:
not(true) -> false
not(false) -> true
evenodd(x, 0) -> not(evenodd(x, s(0)))
evenodd(0, s(0)) -> false
evenodd(s(x), s(0)) -> evenodd(x, 0)
Strategy:
innermost
The following dependency pair can be strictly oriented:
EVENODD(s(x), s(0)) -> EVENODD(x, 0)
There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial
resulting in one new DP problem.
Used Argument Filtering System: EVENODD(x1, x2) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
Dependency Pair:
EVENODD(x, 0) -> EVENODD(x, s(0))
Rules:
not(true) -> false
not(false) -> true
evenodd(x, 0) -> not(evenodd(x, s(0)))
evenodd(0, s(0)) -> false
evenodd(s(x), s(0)) -> evenodd(x, 0)
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes