R
↳Dependency Pair Analysis
G(s(x)) -> F(x)
F(s(x)) -> G(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
F(s(x)) -> G(x)
G(s(x)) -> F(x)
g(s(x)) -> f(x)
g(0) -> 0
f(0) -> s(0)
f(s(x)) -> s(s(g(x)))
innermost
one new Dependency Pair is created:
G(s(x)) -> F(x)
G(s(s(x''))) -> F(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
G(s(s(x''))) -> F(s(x''))
F(s(x)) -> G(x)
g(s(x)) -> f(x)
g(0) -> 0
f(0) -> s(0)
f(s(x)) -> s(s(g(x)))
innermost
one new Dependency Pair is created:
F(s(x)) -> G(x)
F(s(s(s(x'''')))) -> G(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
F(s(s(s(x'''')))) -> G(s(s(x'''')))
G(s(s(x''))) -> F(s(x''))
g(s(x)) -> f(x)
g(0) -> 0
f(0) -> s(0)
f(s(x)) -> s(s(g(x)))
innermost
one new Dependency Pair is created:
G(s(s(x''))) -> F(s(x''))
G(s(s(s(s(x''''''))))) -> F(s(s(s(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
G(s(s(s(s(x''''''))))) -> F(s(s(s(x''''''))))
F(s(s(s(x'''')))) -> G(s(s(x'''')))
g(s(x)) -> f(x)
g(0) -> 0
f(0) -> s(0)
f(s(x)) -> s(s(g(x)))
innermost
one new Dependency Pair is created:
F(s(s(s(x'''')))) -> G(s(s(x'''')))
F(s(s(s(s(s(x'''''''')))))) -> G(s(s(s(s(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
F(s(s(s(s(s(x'''''''')))))) -> G(s(s(s(s(x'''''''')))))
G(s(s(s(s(x''''''))))) -> F(s(s(s(x''''''))))
g(s(x)) -> f(x)
g(0) -> 0
f(0) -> s(0)
f(s(x)) -> s(s(g(x)))
innermost
F(s(s(s(s(s(x'''''''')))))) -> G(s(s(s(s(x'''''''')))))
G(s(s(s(s(x''''''))))) -> F(s(s(s(x''''''))))
POL(G(x1)) = x1 POL(s(x1)) = 1 + x1 POL(F(x1)) = x1
G(x1) -> G(x1)
F(x1) -> F(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
g(s(x)) -> f(x)
g(0) -> 0
f(0) -> s(0)
f(s(x)) -> s(s(g(x)))
innermost