Term Rewriting System R:
[x]
f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))
Innermost Termination of R to be shown.
   R
     ↳Dependency Pair Analysis
R contains the following Dependency Pairs: 
F(s(s(x))) -> F(f(s(x)))
F(s(s(x))) -> F(s(x))
Furthermore, R contains one SCC.
   R
     ↳DPs
       →DP Problem 1
         ↳Argument Filtering and Ordering
Dependency Pairs:
F(s(s(x))) -> F(s(x))
F(s(s(x))) -> F(f(s(x)))
Rules:
f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))
Strategy:
innermost
The following dependency pair can be strictly oriented:
F(s(s(x))) -> F(s(x))
The following usable rules for innermost w.r.t. to the AFS can be oriented: 
f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))
Used ordering: Polynomial ordering with Polynomial interpretation:
|   POL(0) | =  0   | 
|   POL(s(x1)) | =  1 + x1   | 
|   POL(F(x1)) | =  1 + x1   | 
|   POL(f(x1)) | =  1 + x1   | 
 resulting in one new DP problem.
Used Argument Filtering System: F(x1) -> F(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)
   R
     ↳DPs
       →DP Problem 1
         ↳AFS
           →DP Problem 2
             ↳Argument Filtering and Ordering
Dependency Pair:
F(s(s(x))) -> F(f(s(x)))
Rules:
f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))
Strategy:
innermost
The following dependency pair can be strictly oriented:
F(s(s(x))) -> F(f(s(x)))
The following usable rules for innermost w.r.t. to the AFS can be oriented: 
f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))
Used ordering: Polynomial ordering with Polynomial interpretation:
|   POL(0) | =  0   | 
|   POL(s(x1)) | =  1 + x1   | 
|   POL(F(x1)) | =  1 + x1   | 
|   POL(f) | =  1   | 
 resulting in one new DP problem.
Used Argument Filtering System: F(x1) -> F(x1)
s(x1) -> s(x1)
f(x1) -> f
   R
     ↳DPs
       →DP Problem 1
         ↳AFS
           →DP Problem 2
             ↳AFS
             ...
               →DP Problem 3
                 ↳Dependency Graph
Dependency Pair:
Rules:
f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration: 
0:00 minutes