Term Rewriting System R:
[x]
f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(s(x))) -> F(f(s(x)))
F(s(s(x))) -> F(s(x))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

F(s(s(x))) -> F(s(x))
F(s(s(x))) -> F(f(s(x)))


Rules:


f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(s(s(x))) -> F(s(x))


The following usable rules for innermost w.r.t. to the AFS can be oriented:

f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(s(x1))=  1 + x1  
  POL(F(x1))=  1 + x1  
  POL(f(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

F(s(s(x))) -> F(f(s(x)))


Rules:


f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(s(s(x))) -> F(f(s(x)))


The following usable rules for innermost w.r.t. to the AFS can be oriented:

f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(s(x1))=  1 + x1  
  POL(F(x1))=  1 + x1  
  POL(f)=  1  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
s(x1) -> s(x1)
f(x1) -> f


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
AFS
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:


Rules:


f(0) -> s(0)
f(s(0)) -> s(0)
f(s(s(x))) -> f(f(s(x)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes