R
↳Dependency Pair Analysis
F(s(x), y) -> F(f(x, y), y)
F(s(x), y) -> F(x, y)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
F(s(x), y) -> F(x, y)
F(s(x), y) -> F(f(x, y), y)
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost
two new Dependency Pairs are created:
F(s(x), y) -> F(f(x, y), y)
F(s(0), y'') -> F(0, y'')
F(s(s(x'')), y'') -> F(f(f(x'', y''), y''), y'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
F(s(s(x'')), y'') -> F(f(f(x'', y''), y''), y'')
F(s(x), y) -> F(x, y)
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost
two new Dependency Pairs are created:
F(s(s(x'')), y'') -> F(f(f(x'', y''), y''), y'')
F(s(s(0)), y''') -> F(f(0, y'''), y''')
F(s(s(s(x'))), y''') -> F(f(f(f(x', y'''), y'''), y'''), y''')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Rewriting Transformation
F(s(s(s(x'))), y''') -> F(f(f(f(x', y'''), y'''), y'''), y''')
F(s(s(0)), y''') -> F(f(0, y'''), y''')
F(s(x), y) -> F(x, y)
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost
one new Dependency Pair is created:
F(s(s(0)), y''') -> F(f(0, y'''), y''')
F(s(s(0)), y''') -> F(0, y''')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Forward Instantiation Transformation
F(s(x), y) -> F(x, y)
F(s(s(s(x'))), y''') -> F(f(f(f(x', y'''), y'''), y'''), y''')
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost
two new Dependency Pairs are created:
F(s(x), y) -> F(x, y)
F(s(s(x'')), y'') -> F(s(x''), y'')
F(s(s(s(s(x''')))), y') -> F(s(s(s(x'''))), y')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Forward Instantiation Transformation
F(s(s(s(s(x''')))), y') -> F(s(s(s(x'''))), y')
F(s(s(x'')), y'') -> F(s(x''), y'')
F(s(s(s(x'))), y''') -> F(f(f(f(x', y'''), y'''), y'''), y''')
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost
no new Dependency Pairs are created.
F(s(s(s(x'))), y''') -> F(f(f(f(x', y'''), y'''), y'''), y''')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Forward Instantiation Transformation
F(s(s(x'')), y'') -> F(s(x''), y'')
F(s(s(s(s(x''')))), y') -> F(s(s(s(x'''))), y')
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost
two new Dependency Pairs are created:
F(s(s(x'')), y'') -> F(s(x''), y'')
F(s(s(s(x''''))), y'''') -> F(s(s(x'''')), y'''')
F(s(s(s(s(s(x'''''))))), y'''') -> F(s(s(s(s(x''''')))), y'''')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Argument Filtering and Ordering
F(s(s(s(s(s(x'''''))))), y'''') -> F(s(s(s(s(x''''')))), y'''')
F(s(s(s(x''''))), y'''') -> F(s(s(x'''')), y'''')
F(s(s(s(s(x''')))), y') -> F(s(s(s(x'''))), y')
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost
F(s(s(s(s(s(x'''''))))), y'''') -> F(s(s(s(s(x''''')))), y'''')
F(s(s(s(x''''))), y'''') -> F(s(s(x'''')), y'''')
F(s(s(s(s(x''')))), y') -> F(s(s(s(x'''))), y')
POL(s(x1)) = 1 + x1 POL(F(x1, x2)) = 1 + x1 + x2
F(x1, x2) -> F(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Dependency Graph
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
innermost