R
↳Dependency Pair Analysis
TIMES(x, plus(y, s(z))) -> PLUS(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
TIMES(x, plus(y, s(z))) -> TIMES(x, plus(y, times(s(z), 0)))
TIMES(x, plus(y, s(z))) -> PLUS(y, times(s(z), 0))
TIMES(x, plus(y, s(z))) -> TIMES(s(z), 0)
TIMES(x, plus(y, s(z))) -> TIMES(x, s(z))
TIMES(x, s(y)) -> PLUS(times(x, y), x)
TIMES(x, s(y)) -> TIMES(x, y)
PLUS(x, s(y)) -> PLUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
PLUS(x, s(y)) -> PLUS(x, y)
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
PLUS(x, s(y)) -> PLUS(x, y)
PLUS(x'', s(s(y''))) -> PLUS(x'', s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
PLUS(x'', s(s(y''))) -> PLUS(x'', s(y''))
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
PLUS(x'', s(s(y''))) -> PLUS(x'', s(y''))
PLUS(x'''', s(s(s(y'''')))) -> PLUS(x'''', s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
PLUS(x'''', s(s(s(y'''')))) -> PLUS(x'''', s(s(y'''')))
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost
PLUS(x'''', s(s(s(y'''')))) -> PLUS(x'''', s(s(y'''')))
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
TIMES(x, s(y)) -> TIMES(x, y)
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
TIMES(x, s(y)) -> TIMES(x, y)
TIMES(x'', s(s(y''))) -> TIMES(x'', s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
TIMES(x'', s(s(y''))) -> TIMES(x'', s(y''))
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
TIMES(x'', s(s(y''))) -> TIMES(x'', s(y''))
TIMES(x'''', s(s(s(y'''')))) -> TIMES(x'''', s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Argument Filtering and Ordering
TIMES(x'''', s(s(s(y'''')))) -> TIMES(x'''', s(s(y'''')))
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost
TIMES(x'''', s(s(s(y'''')))) -> TIMES(x'''', s(s(y'''')))
TIMES(x1, x2) -> TIMES(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
innermost